如何合理地估算线程池大小?

如何合理地估算线程池大小?

这个问题虽然看起来很小,却并不那么容易回答。大家如果有更好的方法欢迎赐教,先来一个天真的估算方法:假设要求一个系统的TPS(Transaction Per Second或者Task Per Second)至少为20,然后假设每个Transaction由一个线程完成,继续假设平均每个线程处理一个Transaction的时间为4s。那么问题转化为:

如何设计线程池大小,使得可以在1s内处理完20个Transaction?

计算过程很简单,每个线程的处理能力为0.25TPS,那么要达到20TPS,显然需要20/0.25=80个线程。

很显然这个估算方法很天真,因为它没有考虑到CPU数目。一般服务器的CPU核数为16或者32,如果有80个线程,那么肯定会带来太多不必要的线程上下文切换开销。


再来第二种简单的但不知是否可行的方法(N为CPU总核数):

  • 如果是CPU密集型应用,则线程池大小设置为N+1
  • 如果是IO密集型应用,则线程池大小设置为2N+1

如果一台服务器上只部署这一个应用并且只有这一个线程池,那么这种估算或许合理,具体还需自行测试验证。

接下来在这个文档:服务器性能IO优化 中发现一个估算公式:




​1​

​最佳线程数目 = ((线程等待时间+线程CPU时间)/线程CPU时间 )* CPU数目​


比如平均每个线程CPU运行时间为0.5s,而线程等待时间(非CPU运行时间,比如IO)为1.5s,CPU核心数为8,那么根据上面这个公式估算得到:((0.5+1.5)/0.5)*8=32。这个公式进一步转化为:




​1​

​最佳线程数目 = (线程等待时间与线程CPU时间之比 + 1)* CPU数目​


可以得出一个结论:

线程等待时间所占比例越高,需要越多线程。线程CPU时间所占比例越高,需要越少线程。

上一种估算方法也和这个结论相合。

一个系统最快的部分是CPU,所以决定一个系统吞吐量上限的是CPU。增强CPU处理能力,可以提高系统吞吐量上限。但根据短板效应,真实的系统吞吐量并不能单纯根据CPU来计算。那要提高系统吞吐量,就需要从“系统短板”(比如网络延迟、IO)着手:

  • 尽量提高短板操作的并行化比率,比如多线程下载技术
  • 增强短板能力,比如用NIO替代IO

第一条可以联系到Amdahl定律,这条定律定义了串行系统并行化后的加速比计算公式:




​1​

​加速比=优化前系统耗时 / 优化后系统耗时​


加速比越大,表明系统并行化的优化效果越好。Addahl定律还给出了系统并行度、CPU数目和加速比的关系,加速比为Speedup,系统串行化比率(指串行执行代码所占比率)为F,CPU数目为N:




​1​

​Speedup <= ​​​​1​​ ​​/ (F + (​​​​1​​​​-F)/N)​


当N足够大时,串行化比率F越小,加速比Speedup越大。

写到这里,我突然冒出一个问题。

是否使用线程池就一定比使用单线程高效呢?

答案是否定的,比如Redis就是单线程的,但它却非常高效,基本操作都能达到十万量级/s。从线程这个角度来看,部分原因在于:

  • 多线程带来线程上下文切换开销,单线程就没有这种开销

当然“Redis很快”更本质的原因在于:Redis基本都是内存操作,这种情况下单线程可以很高效地利用CPU。而多线程适用场景一般是:存在相当比例的IO和网络操作。

所以即使有上面的简单估算方法,也许看似合理,但实际上也未必合理,都需要结合系统真实情况(比如是IO密集型或者是CPU密集型或者是纯内存操作)和硬件环境(CPU、内存、硬盘读写速度、网络状况等)来不断尝试达到一个符合实际的合理估算值。

最后来一个“Dark Magic”估算方法(因为我暂时还没有搞懂它的原理),使用下面的类:




​001​

​package​​ ​​pool_size_calculate;​


​002​

 


​003​

​import​​ ​​java.math.BigDecimal;​


​004​

​import​​ ​​java.math.RoundingMode;​


​005​

​import​​ ​​java.util.Timer;​


​006​

​import​​ ​​java.util.TimerTask;​


​007​

​import​​ ​​java.util.concurrent.BlockingQueue;​


​008​

 


​009​

​/**​


​010​

​* A class that calculates the optimal thread pool boundaries. It takes the​


​011​

​* desired target utilization and the desired work queue memory consumption as​


​012​

​* input and retuns thread count and work queue capacity.​


​013​

​*​


​014​

​* @author Niklas Schlimm​


​015​

​*​


​016​

​*/​


​017​

​public​​ ​​abstract​​ ​​class​​ ​​PoolSizeCalculator {​


​018​

 


​019​

​/**​


​020​

​* The sample queue size to calculate the size of a single {@link Runnable}​


​021​

​* element.​


​022​

​*/​


​023​

​private​​ ​​final​​ ​​int​​ ​​SAMPLE_QUEUE_SIZE = ​​​​1000​​​​;​


​024​

 


​025​

​/**​


​026​

​* Accuracy of test run. It must finish within 20ms of the testTime​


​027​

​* otherwise we retry the test. This could be configurable.​


​028​

​*/​


​029​

​private​​ ​​final​​ ​​int​​ ​​EPSYLON = ​​​​20​​​​;​


​030​

 


​031​

​/**​


​032​

​* Control variable for the CPU time investigation.​


​033​

​*/​


​034​

​private​​ ​​volatile​​ ​​boolean​​ ​​expired;​


​035​

 


​036​

​/**​


​037​

​* Time (millis) of the test run in the CPU time calculation.​


​038​

​*/​


​039​

​private​​ ​​final​​ ​​long​​ ​​testtime = ​​​​3000​​​​;​


​040​

 


​041​

​/**​


​042​

​* Calculates the boundaries of a thread pool for a given {@link Runnable}.​


​043​

​*​


​044​

​* @param targetUtilization​


​045​

​*            the desired utilization of the CPUs (0 <= targetUtilization <=   *            1)     * @param targetQueueSizeBytes   *            the desired maximum work queue size of the thread pool (bytes)     */​​     ​​protected​​ ​​void​​ ​​calculateBoundaries(BigDecimal targetUtilization,            BigDecimal targetQueueSizeBytes) {      calculateOptimalCapacity(targetQueueSizeBytes);         Runnable task = creatTask();        start(task);        start(task); ​​​​// warm up phase       long cputime = getCurrentThreadCPUTime();       start(task); // test intervall      cputime = getCurrentThreadCPUTime() - cputime;      long waittime = (testtime * 1000000) - cputime;         calculateOptimalThreadCount(cputime, waittime, targetUtilization);  }   private void calculateOptimalCapacity(BigDecimal targetQueueSizeBytes) {        long mem = calculateMemoryUsage();      BigDecimal queueCapacity = targetQueueSizeBytes.divide(new BigDecimal(              mem), RoundingMode.HALF_UP);        System.out.println("Target queue memory usage (bytes): "                + targetQueueSizeBytes);        System.out.println("createTask() produced "                 + creatTask().getClass().getName() + " which took " + mem               + " bytes in a queue");         System.out.println("Formula: " + targetQueueSizeBytes + " / " + mem);       System.out.println("* Recommended queue capacity (bytes): "                 + queueCapacity);   }   /**      * Brian Goetz' optimal thread count formula, see 'Java Concurrency in   * Practice' (chapter 8.2)   *       * @param cpu    *            cpu time consumed by considered task   * @param wait   *            wait time of considered task   * @param targetUtilization      *            target utilization of the system   */     private void calculateOptimalThreadCount(long cpu, long wait,           BigDecimal targetUtilization) {         BigDecimal waitTime = new BigDecimal(wait);         BigDecimal computeTime = new BigDecimal(cpu);       BigDecimal numberOfCPU = new BigDecimal(Runtime.getRuntime()                .availableProcessors());        BigDecimal optimalthreadcount = numberOfCPU.multiply(targetUtilization)                 .multiply(                      new BigDecimal(1).add(waitTime.divide(computeTime,                              RoundingMode.HALF_UP)));        System.out.println("Number of CPU: " + numberOfCPU);        System.out.println("Target utilization: " + targetUtilization);         System.out.println("Elapsed time (nanos): " + (testtime * 1000000));        System.out.println("Compute time (nanos): " + cpu);         System.out.println("Wait time (nanos): " + wait);       System.out.println("Formula: " + numberOfCPU + " * "                + targetUtilization + " * (1 + " + waitTime + " / "                 + computeTime + ")");       System.out.println("* Optimal thread count: " + optimalthreadcount);    }   /**      * Runs the {@link Runnable} over a period defined in {@link #testtime}.     * Based on Heinz Kabbutz' ideas     * (http://www.javaspecialists.eu/archive/Issue124.html).    *       * @param task   *            the runnable under investigation   */     public void start(Runnable task) {      long start = 0;         int runs = 0;       do {            if (++runs > 5) {​


​046​

​throw​​ ​​new​​ ​​IllegalStateException(​​​​"Test not accurate"​​​​);​


​047​

​}​


​048​

​expired = ​​​​false​​​​;​


​049​

​start = System.currentTimeMillis();​


​050​

​Timer timer = ​​​​new​​ ​​Timer();​


​051​

​timer.schedule(​​​​new​​ ​​TimerTask() {​


​052​

​public​​ ​​void​​ ​​run() {​


​053​

​expired = ​​​​true​​​​;​


​054​

​}​


​055​

​}, testtime);​


​056​

​while​​ ​​(!expired) {​


​057​

​task.run();​


​058​

​}​


​059​

​start = System.currentTimeMillis() - start;​


​060​

​timer.cancel();​


​061​

​} ​​​​while​​ ​​(Math.abs(start - testtime) > EPSYLON);​


​062​

​collectGarbage(​​​​3​​​​);​


​063​

​}​


​064​

 


​065​

​private​​ ​​void​​ ​​collectGarbage(​​​​int​​ ​​times) {​


​066​

​for​​ ​​(​​​​int​​ ​​i = ​​​​0​​​​; i < times; i++) {​


​067​

​System.gc();​


​068​

​try​​ ​​{​


​069​

​Thread.sleep(​​​​10​​​​);​


​070​

​} ​​​​catch​​ ​​(InterruptedException e) {​


​071​

​Thread.currentThread().interrupt();​


​072​

​break​​​​;​


​073​

​}​


​074​

​}​


​075​

​}​


​076​

 


​077​

​/**​


​078​

​* Calculates the memory usage of a single element in a work queue. Based on​


​079​

​* Heinz Kabbutz' ideas​


​080​

​* (http://www.javaspecialists.eu/archive/Issue029.html).​


​081​

​*​


​082​

​* @return memory usage of a single {@link Runnable} element in the thread​


​083​

​*         pools work queue​


​084​

​*/​


​085​

​public​​ ​​long​​ ​​calculateMemoryUsage() {​


​086​

​BlockingQueue queue = createWorkQueue();​


​087​

​for​​ ​​(​​​​int​​ ​​i = ​​​​0​​​​; i < SAMPLE_QUEUE_SIZE; i++) {​


​088​

​queue.add(creatTask());​


​089​

​}​


​090​

​long​​ ​​mem0 = Runtime.getRuntime().totalMemory()​


​091​

​- Runtime.getRuntime().freeMemory();​


​092​

​long​​ ​​mem1 = Runtime.getRuntime().totalMemory()​


​093​

​- Runtime.getRuntime().freeMemory();​


​094​

​queue = ​​​​null​​​​;​


​095​

​collectGarbage(​​​​15​​​​);​


​096​

​mem0 = Runtime.getRuntime().totalMemory()​


​097​

​- Runtime.getRuntime().freeMemory();​


​098​

​queue = createWorkQueue();​


​099​

​for​​ ​​(​​​​int​​ ​​i = ​​​​0​​​​; i < SAMPLE_QUEUE_SIZE; i++) {​


​100​

​queue.add(creatTask());​


​101​

​}​


​102​

​collectGarbage(​​​​15​​​​);​


​103​

​mem1 = Runtime.getRuntime().totalMemory()​


​104​

​- Runtime.getRuntime().freeMemory();​


​105​

​return​​ ​​(mem1 - mem0) / SAMPLE_QUEUE_SIZE;​


​106​

​}​


​107​

 


​108​

​/**​


​109​

​* Create your runnable task here.​


​110​

​*​


​111​

​* @return an instance of your runnable task under investigation​


​112​

​*/​


​113​

​protected​​ ​​abstract​​ ​​Runnable creatTask();​


​114​

 


​115​

​/**​


​116​

​* Return an instance of the queue used in the thread pool.​


​117​

​*​


​118​

​* @return queue instance​


​119​

​*/​


​120​

​protected​​ ​​abstract​​ ​​BlockingQueue createWorkQueue();​


​121​

 


​122​

​/**​


​123​

​* Calculate current cpu time. Various frameworks may be used here,​


​124​

​* depending on the operating system in use. (e.g.​


​125​

​* http://www.hyperic.com/products/sigar). The more accurate the CPU time​


​126​

​* measurement, the more accurate the results for thread count boundaries.​


​127​

​*​


​128​

​* @return current cpu time of current thread​


​129​

​*/​


​130​

​protected​​ ​​abstract​​ ​​long​​ ​​getCurrentThreadCPUTime();​


​131​

 


​132​

​}​


然后自己继承这个抽象类并实现它的三个抽象方法,比如下面是我写的一个示例(任务是请求网络数据),其中我指定期望CPU利用率为1.0(即100%),任务队列总大小不超过100,000字节:




​01​

​package​​ ​​pool_size_calculate;​


​02​

 


​03​

​import​​ ​​java.io.BufferedReader;​


​04​

​import​​ ​​java.io.IOException;​


​05​

​import​​ ​​java.io.InputStreamReader;​


​06​

​import​​ ​​java.lang.management.ManagementFactory;​


​07​

​import​​ ​​java.math.BigDecimal;​


​08​

​import​​ ​​java.net.HttpURLConnection;​


​09​

​import​​ ​​java.net.URL;​


​10​

​import​​ ​​java.util.concurrent.BlockingQueue;​


​11​

​import​​ ​​java.util.concurrent.LinkedBlockingQueue;​


​12​

 


​13​

​public​​ ​​class​​ ​​SimplePoolSizeCaculatorImpl ​​​​extends​​ ​​PoolSizeCalculator {​


​14​

 


​15​

​@Override​


​16​

​protected​​ ​​Runnable creatTask() {​


​17​

​return​​ ​​new​​ ​​AsyncIOTask();​


​18​

​}​


​19​

 


​20​

​@Override​


​21​

​protected​​ ​​BlockingQueue createWorkQueue() {​


​22​

​return​​ ​​new​​ ​​LinkedBlockingQueue(​​​​1000​​​​);​


​23​

​}​


​24​

 


​25​

​@Override​


​26​

​protected​​ ​​long​​ ​​getCurrentThreadCPUTime() {​


​27​

​return​​ ​​ManagementFactory.getThreadMXBean().getCurrentThreadCpuTime();​


​28​

​}​


​29​

 


​30​

​public​​ ​​static​​ ​​void​​ ​​main(String[] args) {​


​31​

​PoolSizeCalculator poolSizeCalculator = ​​​​new​​ ​​SimplePoolSizeCaculatorImpl();​


​32​

​poolSizeCalculator.calculateBoundaries(​​​​new​​ ​​BigDecimal(​​​​1.0​​​​), ​​​​new​​ ​​BigDecimal(​​​​100000​​​​));​


​33​

​}​


​34​

 


​35​

​}​


​36​

 


​37​

​/**​


​38​

​* 自定义的异步IO任务​


​39​

​* @author Will​


​40​

​*​


​41​

​*/​


​42​

​class​​ ​​AsyncIOTask ​​​​implements​​ ​​Runnable {​


​43​

 


​44​

​@Override​


​45​

​public​​ ​​void​​ ​​run() {​


​46​

​HttpURLConnection connection = ​​​​null​​​​;​


​47​

​BufferedReader reader = ​​​​null​​​​;​


​48​

​try​​ ​​{​


​49​

​String getURL = ​​​​"http://baidu.com"​​​​;​


​50​

​URL getUrl = ​​​​new​​ ​​URL(getURL);​


​51​

 


​52​

​connection = (HttpURLConnection) getUrl.openConnection();​


​53​

​connection.connect();​


​54​

​reader = ​​​​new​​ ​​BufferedReader(​​​​new​​ ​​InputStreamReader(​


​55​

​connection.getInputStream()));​


​56​

 


​57​

​String line;​


​58​

​while​​ ​​((line = reader.readLine()) != ​​​​null​​​​) {​


​59​

​// empty loop​


​60​

​}​


​61​

​}​


​62​

 


​63​

​catch​​ ​​(IOException e) {​


​64​

 


​65​

​} ​​​​finally​​ ​​{​


​66​

​if​​​​(reader != ​​​​null​​​​) {​


​67​

​try​​ ​​{​


​68​

​reader.close();​


​69​

​}​


​70​

​catch​​​​(Exception e) {​


​71​

 


​72​

​}​


​73​

​}​


​74​

​connection.disconnect();​


​75​

​}​


​76​

 


​77​

​}​


​78​

 


​79​

​}​


得到的输出如下:




​01​

​Target queue memory usage (bytes): 100000​


​02​

​createTask() produced pool_size_calculate.AsyncIOTask which took 40 bytes in a queue​


​03​

​Formula: 100000 / 40​


​04​

​* Recommended queue capacity (bytes): 2500​


​05​

​Number of CPU: 4​


​06​

​Target utilization: 1​


​07​

​Elapsed time (nanos): 3000000000​


​08​

​Compute time (nanos): 47181000​


​09​

​Wait time (nanos): 2952819000​


​10​

​Formula: 4 * 1 * (1 + 2952819000 / 47181000)​


​11​

​* Optimal thread count: 256​


推荐的任务队列大小为2500,线程数为256,有点出乎意料之外。我可以如下构造一个线程池:




​1​

​ThreadPoolExecutor pool =​


​2​

​new​​ ​​ThreadPoolExecutor(​​​​256​​​​, ​​​​256​​​​, 0L, TimeUnit.MILLISECONDS, ​​​​new​​ ​​LinkedBlockingQueue(​​​​2500​​​​));​