​http://ac.jobdu.com/problem.php?pid=1421​

第一题:题意就是给定n个点每个点可能带表Female或者Male,以及给出各个节点的关系矩阵,让你求出现 AbOr的期望,  、

AbOr这样定义:

1:必须是Male;

2:他至少有m个Female朋友;

刚开始我一直以为求的是AbOr出现的概率,所以显示按每个节点两种状态(F ,M)爆搜所有可能的情况然后除以总的可能(2^N)样例竟然都过了,提交直接TLE因为本菜没有注意到T = 10000 这样复杂度就成了10^4*2^20了,指定超时。后来想到了循环每个节点,然后检查他的哦鞥有节点只有他的朋友节点大于m 才有可讨论性,假设他的朋友节点为ct个,那么他所有的可能是 c(ct,m) ,c(ct,m + 1) , ct(ct,m + 2) , ...... , c(ct,ct);而他的概率全都是 (1/2)(当前节点肯定是M)*(1/2^i) *(1/2^(ct - i)) (m<=i <= ct) 及概率p = 1/2^(ct+1);而且每个情况得概率相同。这样再根据期望公式  E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn)求即可:



#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#define maxn 55
using namespace std;

int pow2[maxn];
double c[maxn][maxn];
int n,m;
char str[maxn][maxn];

int main()
{
int i,j,t;
//求2的幂
for (i = 0; i < 21; ++i)
pow2[i] = 1<<i;
//求组合
for (i = 0; i < 21; ++i)
c[i][i] = c[i][0] = 1;
for (i = 2; i < 21; ++i)
{
for (j = 1; j < i; ++j)
{
c[i][j] = c[i - 1][j - 1] + c[i - 1][j];
}
}
scanf("%d",&t);
while (t--)
{
scanf("%d%d",&n,&m);
for (i = 0; i < n; ++i) scanf("%s",str[i]);
if (n ==0)
{
printf("0.00\n");
continue;
}
double sum = 0,ans = 0;
for (i = 0; i < n; ++i)
{
int ct = 0; sum = 0;
//遍历他的朋友
for (j = 0; j < n; ++j)
{
if (str[i][j] == '1') ct++;
}
if (ct >= m)
{
//求和后乘以概率
for (int k = m; k <= ct; ++k)
{
sum += c[ct][k];
}
ans += (1.0/pow2[ct + 1])*sum;
}
}
printf("%.2lf\n",ans);
}
return 0;
}

/**************************************************************
Problem: 1421
User: gbaoxing
Language: C++
Result: Accepted
Time:10 ms
Memory:1536 kb
****************************************************************/


  ​​http://ac.jobdu.com/problem.php?pid=1422​

第二题:

这道题啊,问了虎哥才做出来的,分别开两个数组记录当前节点左边比他小的最近位置,右边比他小的最近位置,然后比较左右距离大小输出即可;



#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#define maxn 1000009
using namespace std;

int a[maxn],l[maxn],r[maxn];
int n;
int Abs(int x)
{
if (x < 0) return -x;
else return x;
}
int main()
{
int i,t;
scanf("%d",&t);
while (t--)
{
scanf("%d",&n);
memset(a,0,sizeof(a));
scanf("%d",&a[1]);
//查找左边的最近的比他小的位置
l[1] = 0;
for (i = 2; i <= n; ++i)
{
scanf("%d",&a[i]);
int pos = i - 1;
while (a[pos] >= a[i])
{
pos = l[pos];
if (pos == 0) break;
}
if (pos == 0) l[i] = 0;
else l[i] = pos;
}
//查找右边的最近的比他小的位置
r[n] = 0;
for (i = n - 1; i >= 1; --i)
{
int pos = i + 1;
while (a[pos] >= a[i])
{
pos = r[pos];
if (pos == 0) break;
}
if (pos == 0) r[i] = 0;
else r[i] = pos;
}
//遍历输出
for (i = 1; i < n; ++i)
{
if (l[i] !=0 && r[i] != 0)
{
int t;
if (Abs(l[i] - i) <= Abs(r[i] - i)) t = l[i];
else t = r[i];
printf("%d ",a[t]);

}
else
{
if (l[i] == 0 && r[i] == 0) printf("0 ");
else
{
if (l[i] != 0)
printf("%d ",a[l[i]]);
else
printf("%d ",a[r[i]]);
}
}
}
if (l[n] !=0 && r[n] != 0)
{
int t;
if (Abs(l[n] - n) <= Abs(r[n] - n)) t = l[n];
else t = r[n];
printf("%d",a[t]);

}
else
{
if (l[n] == 0 && r[n] == 0) printf("0");
else
{
if (l[n] != 0)
printf("%d",a[l[n]]);
else
printf("%d",a[r[n]]);
}
}
printf("\n");
}
return 0;
}

/**************************************************************
Problem: 1422
User: gbaoxing
Language: C++
Result: Accepted
Time:1610 ms
Memory:13228 kb
****************************************************************/


  第四题:​​http://ac.jobdu.com/problem.php?pid=1424​

题意是给定n个圆,m个描述,x y表示编号为x的圆要套y个圆,题目给出如果重复嵌套只算最外层的嵌套。这道题目trick大大的多,首先看

1:1≤n≤16,0≤m≤100  这里m可能远大于n所以会出现 形如下面的数据

1 2 

1 4

1 6 这样不确定的话输出NO 

如果是:

1 2

1 2 的重复数据要记得去重;

2:. (1≤x≤n,|y|≤1000)y还有可能负值,并且有可能大于 n - 1

所以如果出现这样的数据也指定不可能了。

才开始我使用两个栈来模拟的,s1放需要套圆的圆(即y != 0) s2放不需要套圆的圆(即y ==0) 每次从s2中取y个给s1中的圆套,这样就满足了,然后s1的那个出栈,y ==0 压入s2变为可被套的、、知道s2为空即可,我在处理向阳里给的第三组数数据时,直接从m 到 n处理未给定的节点了,其实应该从s1.size() + s2.size()开始的,改后总算A了,整死我了。



#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <stack>
#define maxn 108
using namespace std;

struct node
{
int x;
int num;
}stock[maxn];
stack<node>s1,s2;
int n,m,len;

int isok(node z)
{
for (int i = 0; i < len; ++i)
{
if (stock[i].x == z.x && stock[i].num != z.num) return -1;//判断trick
if (stock[i].x == z.x && stock[i].num == z.num) return 0;//去重
}
stock[len++] = z;
return 1;
}
int main()
{
int i,t;
scanf("%d",&t);
while (t--)
{
len = 0;
while (!s1.empty()) s1.pop();
while (!s2.empty()) s2.pop();
scanf("%d%d",&n,&m);
node p;
bool flag = false;
for (i = 0; i < m; ++i)
{
scanf("%d%d",&p.x,&p.num);
int mark = isok(p);
if (mark == -1) flag = true;
else if (mark == 1)
{
if (p.num) s1.push(p);
else s2.push(p);
}
if (p.num > n - 1 || p.num < 0)
flag = true;
}
if (flag)
{
printf("NO\n");
continue;
}
//注意起点。。
for (i = s1.size() + s2.size(); i < n; ++i)
{
p.num = 0;
s2.push(p);
}
//两个栈的模拟
while (!s1.empty() && !s2.empty())
{
node tmp = s1.top(); s1.pop();
if (tmp.num > s2.size())
{
flag = true;
break;
}
else
{
for (i = 0; i < tmp.num; ++i)
{
s2.pop();
}
tmp.num = 0;
s2.push(tmp);
}
}
if (s1.empty() && !flag) printf("YES\n");
else printf("NO\n");
}
return 0;
}

/**************************************************************
Problem: 1424
User: gbaoxing
Language: C++
Result: Accepted
Time:10 ms
Memory:1516 kb
****************************************************************/


  其实还有一个更容易的办法就是判完trick后,把所有满足条件并且去重之后的y相加,判断是否<= n -1 如果成立YES 否则NO 不知道怎么证明:



#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <stack>
using namespace std;

struct node
{
int x;
int y;
}p[108];
int n,m,len;

int isok(node z)
{
for (int i = 0; i < len; ++i)
{
if (p[i].x == z.x && p[i].y != z.y) return -1;
if (p[i].x == z.x && p[i].y == z.y) return 1;
}
p[len++] = z;
return 0;
}

int main()
{
int i,t;
int x,y;
scanf("%d",&t);
while (t--)
{
len = 0;
scanf("%d%d",&n,&m);
bool flag = false;
node q;
int ct = 0;
for (i = 0; i < m; ++i)
{
scanf("%d%d",&x,&y);
q.x = x; q.y = y;
int mark = isok(q);
if (mark == -1) flag = true;
else if (mark == 0) ct += y;
if (y > n - 1 || y < 0)
flag = true;

}
if (flag)
{
printf("NO\n");
continue;
}
if (ct <= n - 1) printf("YES\n");
else printf("NO\n");
}
return 0;
}

/**************************************************************
Problem: 1424
User: gbaoxing
Language: C++
Result: Accepted
Time:10 ms
Memory:1512 kb
****************************************************************/