Fuzzy C-Means读书笔记
一、算法简介
很显然,图中的数据集可分为两个簇。借鉴K-Means算法的思想,利用单个特殊的点(质心)表示一个簇。因此,我们用\(C_1\)和\(C_2\)分别表示簇1和簇2。现在我们将隶属度引入到K-Means中,这就是我们研究的模糊C-Means算法。
二、算法的目标函数
K-Means算法的评价指标:簇内样本之间的距离尽可能的小,簇间样本之间的距离尽可能的大。Fuzzy C-Means继承并发展了它的评价指标。在K-Means算法中,每个数据只能归属一个簇。而在Fuzzy C-Means算法中,每个数据归属C个类。例如,在上图中,第\(j\)个数据\(x_j\)与\(C_1\)和\(C_2\)的距离分别为\(||x_j - C_1||^2\)、\(||x_j - C_2||^2\)。由上图可知,\(x_j\)属于\(C_1\)。所以我们希望\(||x_j - C_1||^2\)比\(||x_j - C_2||^2\)更有用点。最简单的想法是引入权重,希望\(u_{1j}\)越大越好,\(u_{2j}\)越小越好。因此,我用使用\(u_{1j}+u_{2j}=1\)对目标函数\((u_{1j})^m||x_j - C_1||^2+(u_{2j})^m||x_j - C_2||^2\)进行约束。模糊指数\(m(m>1)\)控制距离重要性的大小。
假设我们有\(N\)个数据,那么这\(N\)个数据到第一类的距离为:
\(N\)个数据到第二类的距离为:
则Fuzzy C-Means的目标函数:
三、算法迭代公式推导
这里,我们对上述的目标函数中的类别数2扩展到任意数\(L\),即
很显然,拉格朗日乘子法(Lagrange multipliers)是我们求解多元函数在一组约束下的极值的方法。
\(J\)对\(u_{ij}\)求偏导:
将上式求出来的\(u_{ij}\)带入约束条件中:
将上式求出来的结果带入\(u_{ij}\)中,可得
\(J\)对\(c_{i}\)求偏导:
四、Matlab实现
%% ------------------------ 编码信息 -------------------------
% Author: Lee Wen-Tsao
% Time: 2021-09-01
% Content: Fuzzy C-Means
% Parameter:
% n: 数据长度
% k: 分类数目
% m: 模糊指数,取值范围(1.5, 2.5)
%% ----------------------- 清理运行环境 -----------------------
clc;
clear;
close all;
%% 输入数据
Iris = uiimport('iris.data');
Iris = cellfun(@(x) regexp(x,',','split'), Iris.iris,'UniformOutput',false);
data = cellfun(@(x) x(:,1:4),Iris,'UniformOutput',false);
data = str2double(reshape([data{:}],4,150)');
%% 定义参数
[n, d] = size(data);
maxIter = 1000;
k = 3;
m = 2;
display = true;
epsilon = 0.01;
%% 初始化隶属度矩阵
random_mat = rand(k,n);
sum_mat = sum(random_mat);
MembershipMat = random_mat ./ sum_mat;
%% 拟合数据
obj_fcn = zeros(1,maxIter);
for it=1:maxIter
% 更新簇心
centers = updateCenter(MembershipMat, data, m, k);
% 更新隶属矩阵
[MembershipMat, dists] = updateMembershipMat(centers, data, k, n, m);
% 计算目标函数值
obj_fcn(it) = sum(sum((MembershipMat.^m).*(dists.^2)));
if display
fprintf('Iteration count=%d, obj_fcn=%f\n',it, obj_fcn(it))
end
if it > 1
if abs(obj_fcn(it)-obj_fcn(it-1))<epsilon, break;end
end
end
tatgets = getLabel(MembershipMat);
%% 根据隶属度矩阵更新聚类中心
function Centroids = updateCenter(MembershipMat, data, m, k)
fm = MembershipMat.^m;
summation = sum(fm, 2).*ones(k, size(data,2));
Centroids = (fm*data)./summation;
end
%% 更新隶属度矩阵
function [Membership, dist] = updateMembershipMat(Centroids, data, k, n, m)
dist = ones(k, n);
for i=1:k
dist(i,:) = vecnorm(data - Centroids(i,:), 2, 2)';
end
Mebership = dist.^(-2/(m-1));
summation = sum(Mebership);
Membership = (Mebership./summation);
end
%% 获取标签
function labels = getLabel(MembershipMat)
[~, labels] = max(MembershipMat);
end
注意:鸢尾花(Iris)数据集来自UCI数据库。