Given n, how many structurally unique BST's (binary search trees) that store values 1 ... n?
Example:
Input: 3 Output: 5 Explanation: Given n = 3, there are a total of 5 unique BST's: 1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3
Approach #1: DP. [C++]
class Solution { public: int numTrees(int n) { vector<int> nums(n+1); nums[0] = 1; nums[1] = 1; for (int i = 2; i <= n; ++i) { for (int j = 0; j <= i-1; ++j) { nums[i] += nums[j] * nums[i-1-j]; } } return nums[n]; } };
Analysis:
status: nums[n] represent that there have n nodes the result of BST's number.
init: nums[1] = 1, nums[0] = 1;
function: ∑(nums[j] * nums[i-1-j]);
result: nums[n]