括号生成
数字 `n` 代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且 **有效的** 括号组合。
输入:n = 3
输出:["((()))","(()())","(())()","()(())","()()()"]
class Solution {
void backtrack(vector<string>& ans, string& cur, int open, int close, int n) {
if (cur.size() == n * 2) {
ans.push_back(cur);
return;
}
if (open < n) {
cur.push_back('(');
backtrack(ans, cur, open + 1, close, n);
cur.pop_back();
}
if (close < open) {
cur.push_back(')');
backtrack(ans, cur, open, close + 1, n);
cur.pop_back();
}
}
public:
vector<string> generateParenthesis(int n) {
vector<string> result;
string current;
backtrack(result, current, 0, 0, n);
return result;
}
};
传递信息
给定总玩家数 n,以及按 [玩家编号,对应可传递玩家编号] 关系组成的二维数组 relation。返回信息从小 A (编号 0 ) 经过 k 轮传递到编号为 n-1 的小伙伴处的方案数;若不能到达,返回 0。
输入:n = 5, relation = [[0,2],[2,1],[3,4],[2,3],[1,4],[2,0],[0,4]], k = 3
输出:3
解释:信息从小 A 编号 0 处开始,经 3 轮传递,到达编号 4。共有 3 种方案,分别是 0->2->0->4, 0->2->1->4, 0->2->3->4。
//深度优先搜索
class Solution {
public:
int numWays(int n, vector<vector<int>> &relation, int k) {
vector<vector<int>> edges(n);
for (auto &edge : relation) {
int src = edge[0], dst = edge[1];
edges[src].push_back(dst);
}
int ways = 0;
function<void(int, int)> dfs = [&](int index, int steps) {
if (steps == k) {
if (index == n - 1) {
++ways;
}
return;
}
for (int to : edges[index]) {
dfs(to, steps + 1);
}
};
dfs(0, 0);
return ways;
}
};
//广度优先搜索
class Solution {
public:
int numWays(int n, vector<vector<int>> &relation, int k) {
vector<vector<int>> edges(n);
for (auto &edge : relation) {
int src = edge[0], dst = edge[1];
edges[src].push_back(dst);
}
int steps = 0;
queue<int> que;
que.push(0);
while (!que.empty() && steps < k) {
steps++;
int size = que.size();
for (int i = 0; i < size; i++) {
int index = que.front();
que.pop();
for (auto &nextIndex : edges[index]) {
que.push(nextIndex);
}
}
}
int ways = 0;
if (steps == k) {
while (!que.empty()) {
if (que.front() == n - 1) {
ways++;
}
que.pop();
}
}
return ways;
}
};
















