一、读写锁 ReadWriteLock概念特点

读写锁维护了一对相关的锁,一个用于只读操作,一个用于写入操作。只要没有writer,读取锁可以由多个reader线程同时保持。写入锁是独占的。

互斥锁【ReetrantLock】一次只允许一个线程访问共享数据,哪怕进行的是只读操作;读写锁【ReadWriteLock】允许对共享数据进行更高级别的并发访问:对于写操作,一次只有一个线程(write线程)可以修改共享数据,对于读操作,允许任意数量的线程同时进行读取。writer可以获取读取锁,但reader不能获取写入锁。写入锁降级为读取锁,实现方式是:先获取写入锁,然后获取读取锁,最后释放写入锁。但是,从读取锁升级到写入锁是不可能的。

读写锁的读取锁和写入锁都支持锁获取期间的中断。并且写入锁提供了一个 Condition 实现,对于写入锁来说,该实现的行为与 ReentrantLock.newCondition() 提供的 Condition 实现对 ReentrantLock 所做的行为相同。当然,此 Condition 只能用于写入锁。读取锁不支持 Condition,readLock().newCondition() 会抛出 UnsupportedOperationException。

二、实现原理及核心代码

读写锁也是基于AQS实现。

AQS以单个 int 类型的原子变量来表示其状态,定义了4个抽象方法( tryAcquire(int)、tryRelease(int)、tryAcquireShared(int)、tryReleaseShared(int),前两个方法用于独占/排他模式,后两个用于共享模式 )留给子类实现,用于自定义同步器的行为以实现特定的功能。

对于 ReentrantLock,它是可重入的独占锁,内部的 Sync 类实现了 tryAcquire(int)、tryRelease(int) 方法,并用状态的值来表示重入次数,加锁或重入锁时状态加 1,释放锁时状态减 1,状态值等于 0 表示锁空闲。

对于 CountDownLatch,它是一个关卡,在条件满足前阻塞所有等待线程,条件满足后允许所有线程通过。内部类 Sync 把状态初始化为大于 0 的某个值,当状态大于 0 时所有wait线程阻塞,每调用一次 countDown 方法就把状态值减 1,减为 0 时允许所有线程通过。利用了AQS的共享模式。

【AQS一个状态如何表示多个读锁与单个写锁呢,】一个状态是没法既表示读锁,又表示写锁的,不够用啊,那就辦成两份用了,客家话说一个饭粒咬成两半吃,状态的高位部分表示读锁,低位表示写锁,由于写锁只有一个,所以写锁的重入计数也解决了,这也会导致写锁可重入的次数减小。

【如何表示每个读锁、写锁的重入次数呢】由于读锁可以同时有多个,肯定不能再用辦成两份用的方法来处理了,但我们有 ThreadLocal,可以把线程重入读锁的次数作为值存在 ThreadLocal 里。AQS 的状态是32位(​​int​​ 类型)的,辦成两份,读锁用高16位,表示持有读锁的线程数(sharedCount),写锁低16位,表示写锁的重入次数(exclusiveCount)。状态值为 0 表示锁空闲,sharedCount不为 0 表示分配了读锁,exclusiveCount 不为 0 表示分配了写锁,sharedCount和exclusiveCount 肯定不会同时不为 0。

【读、写锁的公平性如何实现】对于公平性的实现,可以通过AQS的等待队列和它的抽象方法来控制,在状态值的另一半里存储当前持有读锁的线程数。如果读线程申请读锁,当前写锁重入次数不为 0 时,则等待,否则可以马上分配;如果是写线程申请写锁,当前状态为 0 则可以马上分配,否则等待。



abstract static class Sync extends AbstractQueuedSynchronizer {

//
//
static final int SHARED_SHIFT = 16;

// 由于读锁用高位部分,所以读锁个数加1,其实是状态值加 2^16
static final int SHARED_UNIT = (1 << SHARED_SHIFT);

// 写锁的可重入的最大次数、读锁允许的最大数量
static final int MAX_COUNT = (1 << SHARED_SHIFT) - 1;

// 写锁的掩码,用于状态的低16位有效值
static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;

// 读锁计数,当前持有读锁的线程数
static int sharedCount(int c) { return c >>> SHARED_SHIFT; }

// 写锁的计数,也就是它的重入次数
static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; }
/**
* 每个线程特定的 read 持有计数。存放在ThreadLocal,不需要是线程安全的。
*/
static final class HoldCounter {
int count = 0;

// 使用id而不是引用是为了避免保留垃圾。注意这是个常量。
final long tid = Thread.currentThread().getId();
}

/**
* 采用继承是为了重写 initialValue 方法,这样就不用进行这样的处理:
* 如果ThreadLocal没有当前线程的计数,则new一个,再放进ThreadLocal里。
* 可以直接调用 get。
* */
static final class ThreadLocalHoldCounter
extends ThreadLocal<HoldCounter> {
public HoldCounter initialValue() {
return new HoldCounter();
}
}

/**
* 保存当前线程重入读锁的次数的容器。在读锁重入次数为 0 时移除。
*/
private transient ThreadLocalHoldCounter readHolds;

/**
* 最近一个成功获取读锁的线程的计数。这省却了ThreadLocal查找,
* 通常情况下,下一个释放线程是最后一个获取线程。这不是 volatile 的,
* 因为它仅用于试探的,线程进行缓存也是可以的
* (因为判断是否是当前线程是通过线程id来比较的)。
*/
private transient HoldCounter cachedHoldCounter;

/**
* firstReader是这样一个特殊线程:它是最后一个把 共享计数 从 0 改为 1 的
* (在锁空闲的时候),而且从那之后还没有释放读锁的。如果不存在则为null。
* firstReaderHoldCount 是 firstReader 的重入计数。
*
* firstReader 不能导致保留垃圾,因此在 tryReleaseShared 里设置为null,
* 除非线程异常终止,没有释放读锁。
*
* 作用是在跟踪无竞争的读锁计数时非常便宜。
*
* firstReader及其计数firstReaderHoldCount是不会放入 readHolds 的。
*/
private transient Thread firstReader = null;
private transient int firstReaderHoldCount;

Sync() {
readHolds = new ThreadLocalHoldCounter();
setState(getState()); // 确保 readHolds 的内存可见性,利用 volatile 写的内存语义。
}
}

//写锁的获取与释放
protected final boolean tryAcquire(int acquires) {
Thread current = Thread.currentThread();
int c = getState();
int w = exclusiveCount(c);
if (c != 0) { // 状态不为0,表示锁被分配出去了。

// (Note: if c != 0 and w == 0 then shared count != 0)
// c != 0 and w == 0 表示分配了读锁
// w != 0 && current != getExclusiveOwnerThread() 表示其他线程获取了写锁。
if (w == 0 || current != getExclusiveOwnerThread())
return false ;

// 写锁重入
// 检测是否超过最大重入次数。
if (w + exclusiveCount(acquires) > MAX_COUNT)
throw new Error("Maximum lock count exceeded");

// 更新写锁重入次数,写锁在低位,直接加上 acquire 即可。
// Reentrant acquire
setState(c + acquires);
return true ;
}

// writerShouldBlock 留给子类实现,用于实现公平性策略。
// 如果允许获取写锁,则用 CAS 更新状态。
if (writerShouldBlock() ||
!compareAndSetState(c, c + acquires))
return false ; // 不允许获取锁 或 CAS 失败。

// 获取写锁超过,设置独占线程。
setExclusiveOwnerThread(current);
return true;
}

protected final boolean tryRelease(int releases) {
if (!isHeldExclusively()) // 是否是当前线程持有写锁
throw new IllegalMonitorStateException();

// 这里不考虑高16位是因为高16位肯定是 0。
int nextc = getState() - releases;
boolean free = exclusiveCount(nextc) == 0;
if (free)
setExclusiveOwnerThread( null); // 写锁完全释放,设置独占线程为null。
setState(nextc);
return free;
}

//读锁的获取与释放
// 参数变为 unused 是因为读锁的重入计数是内部维护的。
protected final int tryAcquireShared(int unused) {
Thread current = Thread.currentThread();
int c = getState();

// 这个if语句是说:持有写锁的线程可以获取读锁。
if (exclusiveCount(c) != 0 && // 已分配了写锁
getExclusiveOwnerThread() != current) // 且当前线程不是持有写锁的线程
return -1;

int r = sharedCount(c); // 取读锁计数
if (!readerShouldBlock() && // 由子类根据其公平策略决定是否允许获取读锁
r < MAX_COUNT && // 读锁数量还没达到最大值

// 尝试获取读锁。注意读线程计数的单位是 2^16
compareAndSetState(c, c + SHARED_UNIT)) {
// 成功获取读锁

// 注意下面对firstReader的处理:firstReader是不会放到readHolds里的
// 这样,在读锁只有一个的情况下,就避免了查找readHolds。
if (r == 0) { // 是 firstReader,计数不会放入 readHolds。
firstReader = current;
firstReaderHoldCount = 1;
} else if (firstReader == current) { // firstReader 重入
firstReaderHoldCount++;
} else {
// 非 firstReader 读锁重入计数更新
HoldCounter rh = cachedHoldCounter; // 首先访问缓存
if (rh == null || rh.tid != current.getId())
cachedHoldCounter = rh = readHolds.get();
else if (rh.count == 0)
readHolds.set(rh);
rh.count++;
}
return 1;
}
// 获取读锁失败,放到循环里重试。
return fullTryAcquireShared(current);
}

final int fullTryAcquireShared(Thread current) {
HoldCounter rh = null;
for (;;) {
int c = getState();
if (exclusiveCount(c) != 0) {
if (getExclusiveOwnerThread() != current)
// 写锁被分配,非写锁线程获取读锁,失败
return -1;
// 否则,当前线程持有写锁,在这里阻塞将导致死锁。

} else if (readerShouldBlock()) {
// 写锁空闲 且 公平策略决定 线程应当被阻塞
// 下面的处理是说,如果是已获取读锁的线程重入读锁时,
// 即使公平策略指示应当阻塞也不会阻塞。
// 否则,这也会导致死锁的。
if (firstReader == current) {
// assert firstReaderHoldCount > 0;
} else {
if (rh == null) {
rh = cachedHoldCounter;
if (rh == null || rh.tid != current.getId()) {
rh = readHolds.get();
if (rh.count == 0)
readHolds.remove();
}
}
// 需要阻塞且是非重入(还未获取读锁的),获取失败。
if (rh.count == 0)
return -1;
}
}

// 写锁空闲 且 公平策略决定线程可以获取读锁
if (sharedCount(c) == MAX_COUNT) // 读锁数量达到最多
throw new Error( "Maximum lock count exceeded");
if (compareAndSetState(c, c + SHARED_UNIT)) {
// 申请读锁成功,下面的处理跟tryAcquireShared是类似的。

if (sharedCount(c) == 0) {
firstReader = current;
firstReaderHoldCount = 1;
} else if (firstReader == current) {
firstReaderHoldCount++;
} else {
// 设定最后一次获取读锁的缓存
if (rh == null)
rh = cachedHoldCounter;

if (rh == null || rh.tid != current.getId())
rh = readHolds.get();
else if (rh.count == 0)
readHolds.set(rh);
rh.count++;

cachedHoldCounter = rh; // 缓存起来用于释放
}
return 1;
}
}
}

protected final boolean tryReleaseShared(int unused) {
Thread current = Thread.currentThread();
// 清理firstReader缓存 或 readHolds里的重入计数
if (firstReader == current) {
// assert firstReaderHoldCount > 0;
if (firstReaderHoldCount == 1)
firstReader = null;
else
firstReaderHoldCount--;
} else {
HoldCounter rh = cachedHoldCounter;
if (rh == null || rh.tid != current.getId())
rh = readHolds.get();
int count = rh.count;
if (count <= 1) {
// 完全释放读锁
readHolds.remove();
if (count <= 0)
throw unmatchedUnlockException();
}
--rh.count; // 主要用于重入退出
}
// 循环在CAS更新状态值,主要是把读锁数量减 1
for (;;) {
int c = getState();
int nextc = c - SHARED_UNIT;
if (compareAndSetState(c, nextc))
// 释放读锁对其他读线程没有任何影响,
// 但可以允许等待的写线程继续,如果读锁、写锁都空闲。
return nextc == 0;
}
}

​​