题目链接:
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 9284 | Accepted: 3254 |
Description
In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be
.
Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.
Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .
Input
The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.
Output
For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.
Sample Input
3 1 5 0 2 5 1 6 4 2 1 2 7 9 5 6 7 9 0 0
Sample Output
83 100
题意:
给了这么多对数,要求去掉k个,问能得到的最大数是多少;
思路:
01分数规划,就是二分答案,再check,check的过程中要排序,poj的输出真是蛋疼;
据说还有一种迭代的写法,上次做了一个数论迭代的题,不管开始的数是多少最后都能迭代出答案,好神奇啊;
Ac代码:
//#include <bits/stdc++.h> #include <vector> #include <iostream> #include <queue> #include <cmath> #include <map> #include <cstring> #include <algorithm> #include <cstdio> using namespace std; #define For(i,j,n) for(int i=j;i<=n;i++) #define mst(ss,b) memset(ss,b,sizeof(ss)); typedef long long LL; template<class T> void read(T&num) { char CH; bool F=false; for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar()); for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar()); F && (num=-num); } int stk[70], tp; template<class T> inline void print(T p) { if(!p) { puts("0"); return; } while(p) stk[++ tp] = p%10, p/=10; while(tp) putchar(stk[tp--] + '0'); putchar('\n'); } const LL mod=1e9+7; const double PI=acos(-1.0); const LL inf=1e18; const int N=2e3+10; const int maxn=1005; const double eps=1e-10; int n,k; double mid; struct node { double a,b; }po[N]; int cmp(node x,node y) { return x.a-mid*x.b<y.a-mid*y.b; } int check(double x) { sort(po+1,po+n+1,cmp); double suma=0,sumb=0; for(int i=k+1;i<=n;i++) { //suma+=po[i].a-po[i].b*x; suma=suma+po[i].a*1.0; sumb=sumb+po[i].b*1.0; } if(suma>=sumb*x)return 1; return 0; } int main() { while(1) { read(n);read(k); if(n==0&&k==0)break; For(i,1,n)scanf("%lf",&po[i].a); For(i,1,n)scanf("%lf",&po[i].b); double l=0,r=1.0; while(r>1e-5+l) { mid=(l+r)/2; if(check(mid))l=mid; else r=mid; } printf("%.0f\n",100*l); } return 0; }