Given the root of a binary search tree and the lowest and highest boundaries as low and high, trim the tree so that all its elements lies in [low, high]. Trimming the tree should not change the relative structure of the elements that will remain in the tree (i.e., any node's descendant should remain a descendant). It can be proven that there is a unique answer.

Return the root of the trimmed binary search tree. Note that the root may change depending on the given bounds.

 

Example 1:

669. Trim a Binary Search Tree_Binary Tree

Input: root = [1,0,2], low = 1, high = 2
Output: [1,null,2]

Example 2:

669. Trim a Binary Search Tree_程序_02

Input: root = [3,0,4,null,2,null,null,1], low = 1, high = 3
Output: [3,2,null,1]

Example 3:

Input: root = [1], low = 1, high = 2
Output: [1]

Example 4:

Input: root = [1,null,2], low = 1, high = 3
Output: [1,null,2]

Example 5:

Input: root = [1,null,2], low = 2, high = 4
Output: [2]

 

Constraints:

  • The number of nodes in the tree in the range [1, 104].
  • 0 <= Node.val <= 104
  • The value of each node in the tree is unique.
  • root is guaranteed to be a valid binary search tree.
  • 0 <= low <= high <= 104
class Solution {
    public TreeNode trimBST(TreeNode root, int L, int R) {
        if (root == null) return null;
        
        if (root.val < L) return trimBST(root.right, L, R);
        if (root.val > R) return trimBST(root.left, L, R);
        
        root.left = trimBST(root.left, L, R);
        root.right = trimBST(root.right, L, R);
        
        return root;
    }
}