Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1840 Accepted Submission(s): 1364
F(x) = 6 * x^7+8*x^6+7*x^3+5*x^2-y*x (0 <= x <=100)
Can you find the minimum value when x is between 0 and 100.
分析:
求函数的最小值,首先求导的导函数为:G(x) = 42 * x^6+48*x^5+21*x^2+10*x-y (0 <= x <=100)
分析导函数的,导函数为一个单调递增的函数。如果导函数的最大值小于0,那么原函数在区间内单调递减。
即F(100)最小;如果但函数的最小值大于0,那么原函数在区间内单调递增,即F(0)最小。如果导函数既有正又有负
又由于导函数是单增函数,所以必有先负后正,即原函数必有先减后增的性质。求出导函数的零点就是原函数的最小值点。
求导函数最小值方法是2分法.
#include<iostream> #include<cstdio> #include<cmath> using namespace std; #define eps 1e-10 double y; double g(double x){ return 42*pow(x,6)+48*pow(x,5)+21*pow(x,2)+10*x; } double f(double x){ return 6*pow(x,7)+8*pow(x,6)+7*pow(x,3)+5*pow(x,2)-y*x;; } int main(){ //freopen("input.txt","r",stdin); int t; double left,right,mid; scanf("%d",&t); while(t--){ scanf("%lf",&y); if(g(100.0)-y<=0){ printf("%.4lf\n",f(100.0)); continue; } left=0; right=100; while(right-left>=eps){ mid=(right+left)/2; if(g(mid)-y<eps) left=mid; else right=mid; } printf("%.4lf\n",f(mid)); } return 0; }