Redis
中另一个常用的数据结构就是list
,其底层有linkedList
、zipList
和quickList
这三种存储方式。
1|0 链表linkedList
与Java
中的LinkedList
类似,Redis
中的linkedList
是一个双向链表,也是由一个个节点组成的。Redis
中借助C
语言实现的链表节点结构如下所示:
//定义链表节点的结构体 typedf struct listNode{ //前一个节点 struct listNode *prev; //后一个节点 struct listNode *next; //当前节点的值的指针 void *value; }listNode;
pre
指向前一个节点,next
指针指向后一个节点,value
保存着当前节点对应的数据对象。listNode
的示意图如下所示:
链表的结构如下:
typedf struct list{ //头指针 listNode *head; //尾指针 listNode *tail; //节点拷贝函数 void *(*dup)(void *ptr); //释放节点函数 void *(*free)(void *ptr); //判断两个节点是否相等的函数 int (*match)(void *ptr,void *key); //链表长度 unsigned long len; }
head
指向链表的头节点,tail
指向链表的尾节点,dup
函数用于链表转移复制时对节点value
拷贝的一个实现,一般情况下使用等号足以,但在某些特殊情况下可能会用到节点转移函数,默认可以给这个函数赋值NULL
即表示使用等号进行节点转移。free
函数用于释放一个节点所占用的内存空间,默认赋值NULL
的话,即使用Redis
自带的zfree
函数进行内存空间释放。match
函数是用来比较两个链表节点的value
值是否相等,相等返回1,不等返回0。len
表示这个链表共有多少个节点,这样就可以在O(1)
的时间复杂度内获得链表的长度。
链表的结构如下所示:
2|0 zipList
Redis
的zipList
结构如下所示:
typedf struct ziplist<T>{ //压缩列表占用字符数 int32 zlbytes; //最后一个元素距离起始位置的偏移量,用于快速定位最后一个节点 int32 zltail_offset; //元素个数 int16 zllength; //元素内容 T[] entries; //结束位 0xFF int8 zlend; }ziplist
zipList
的结构如下所示:
注意到zltail_offset
这个参数,有了这个参数就可以快速定位到最后一个entry
节点的位置,然后开始倒序遍历,也就是说zipList
支持双向遍历。
下面是entry
的结构:
typede struct entry{ //前一个entry的长度 int<var> prelen; //元素类型编码 int<var> encoding; //元素内容 optional byte[] content; }entry
prelen
保存的是前一个entry
节点的长度,这样在倒序遍历时就可以通过这个参数定位到上一个entry
的位置。encoding
保存了content
的编码类型。content
则是保存的元素内容,它是optional
类型的,表示这个字段是可选的。当content
是很小的整数时,它会内联到content
字段的尾部。entry
结构的示意图如下所示:
好了,那现在我们思考一个问题,为什么有了linkedList
还有设计一个zipList
呢?就像zipList
的名字一样,它是一个压缩列表,是为了节约内存而开发的。相比于linkedList
,其少了pre
和next
两个指针。在Redis
中,pre
和next
指针就要占用16个字节(64位系统的一个指针就是8个字节)。另外,linkedList
的每个节点的内存都是单独分配,加剧内存的碎片化,影响内存的管理效率。与之相对的是,zipList
是由连续的内存组成的,这样一来,由于内存是连续的,就减少了许多内存碎片和指针的内存占用,进而节约了内存。
zipList
遍历时,先根据zlbytes
和zltail_offset
定位到最后一个entry
的位置,然后再根据最后一个entry
里的prelen
时确定前一个entry
的位置。
2|1 连锁更新
上面说到了,entry
中有一个prelen
字段,它的长度要么是1个字节,要么都是5个字节:
- 前一个节点的长度小于254个字节,则
prelen
长度为1字节; - 前一个节点的长度大于254字节,则
prelen
长度为5字节;
假设现在有一组压缩列表,长度都在250~253字节之间,突然新增一个entry
节点,这个entry
节点长度大于等于254字节。由于新的entry
节点大于等于254字节,这个entry
节点的prelen
为5个字节,随后会导致其余的所有entry
节点的prelen
增大为5字节。
同样地,删除操作也会导致出现连锁更新这种情况,假设在某一时刻,插入一个长度大于等于254个字节的entry
节点,同时删除其后面的一个长度小于254个字节的entry
节点,由于小于254的entry
节点的删除,大于等于254个字节的entry
节点将会与后面小于254个字节的entry
节点相连,此时就与新增一个长度大于等于254个字节的entry
节点时的情况一样,将会发生连续更新。发生连续更新时,Redis
需要不断地对压缩列表进行内存分配工作,直到结束。
3|0 linkedList与zipList的对比
- 当列表对象中元素的长度较小或者数量较少时,通常采用
zipList
来存储;当列表中元素的长度较大或者数量比较多的时候,则会转而使用双向链表linkedList
来存储。 - 双向链表
linkedList
便于在表的两端进行push
和pop
操作,在插入节点上复杂度很低,但是它的内存开销比较大。首先,它在每个节点上除了要保存数据之外,还有额外保存两个指针;其次,双向链表的各个节点都是单独的内存块,地址不连续,容易形成内存碎片。 -
zipList
存储在一块连续的内存上,所以存储效率很高。但是它不利于修改操作,插入和删除操作需要频繁地申请和释放内存。特别是当zipList
长度很长时,一次realloc
可能会导致大量的数据拷贝。
4|0 quickList
在Redis
3.2版本之后,list
的底层实现方式又多了一种,quickList
。qucikList
是由zipList
和双向链表linkedList
组成的混合体。它将linkedList
按段切分,每一段使用zipList
来紧凑存储,多个zipList
之间使用双向指针串接起来。示意图如下所示:
节点quickListNode
的定义如下:
typedf struct quicklistNode{ //前一个节点 quicklistNode* prev; //后一个节点 quicklistNode* next; //压缩列表 ziplist* zl; //ziplist大小 int32 size; //ziplist 中元素数量 int16 count; //编码形式 存储 ziplist 还是进行 LZF 压缩储存的zipList int2 encoding; ... }quickListNode
quickList
的定义如下所示:
typedf struct quicklist{ //指向头结点 quicklistNode* head; //指向尾节点 quicklistNode* tail; //元素总数 long count; //quicklistNode节点的个数 int nodes; //压缩算法深度 int compressDepth; ... }quickList
上述代码简单地表示了quickList
的大致结构,为了进一步节约空间,Redis
还会对zipList
进行压缩存储,使用LZF算法进行压缩,可以选择压缩深度。
4|1 每个zipList可以存储多少个元素
想要了解这个问题,就得打开redis.conf
文件了。在DVANCED CONFIG
下面有着清晰的记载。
# Lists are also encoded in a special way to save a lot of space. # The number of entries allowed per internal list node can be specified # as a fixed maximum size or a maximum number of elements. # For a fixed maximum size, use -5 through -1, meaning: # -5: max size: 64 Kb <-- not recommended for normal workloads # -4: max size: 32 Kb <-- not recommended # -3: max size: 16 Kb <-- probably not recommended # -2: max size: 8 Kb <-- good # -1: max size: 4 Kb <-- good # Positive numbers mean store up to _exactly_ that number of elements # per list node. # The highest performing option is usually -2 (8 Kb size) or -1 (4 Kb size), # but if your use case is unique, adjust the settings as necessary. list-max-ziplist-size -2
quickList
内部默认单个zipList
长度为8k字节,即list-max-ziplist-size
的值设置为-2,超出了这个阈值,就会重新生成一个zipList
来存储数据。根据注释可知,性能最好的时候就是就是list-max-ziplist-size
为-1和-2,即分别是4kb和8kb的时候,当然,这个值也可以被设置为正数,当list-max-ziplist-szie
为正数n时,表示每个quickList
节点上的zipList
最多包含n个数据项。
4|2 压缩深度
上面提到过,quickList
中可以使用压缩算法对zipList
进行进一步的压缩,这个算法就是LZF算法,这是一种无损压缩算法,具体可以参考这里。使用压缩算法对zipList
进行压缩后,zipList
的结构如下所示:
typedf struct ziplist_compressed{ //元素个数 int32 size; //元素内容 byte[] compressed_data }
此时quickList
的示意图如下所示:
当然,在redis.conf
文件中的DVANCED CONFIG
下面也可以对压缩深度进行配置。
# Lists may also be compressed. # Compress depth is the number of quicklist ziplist nodes from *each* side of # the list to *exclude* from compression. The head and tail of the list # are always uncompressed for fast push/pop operations. Settings are: # 0: disable all list compression # 1: depth 1 means "don't start compressing until after 1 node into the list, # going from either the head or tail" # So: [head]->node->node->...->node->[tail] # [head], [tail] will always be uncompressed; inner nodes will compress. # 2: [head]->[next]->node->node->...->node->[prev]->[tail] # 2 here means: don't compress head or head->next or tail->prev or tail, # but compress all nodes between them. # 3: [head]->[next]->[next]->node->node->...->node->[prev]->[prev]->[tail] # etc. list-compress-depth 0
list-compress-depth
这个参数表示一个quickList
两端不被压缩的节点个数。需要注意的是,这里的节点个数是指quicklist
双向链表的节点个数,而不是指ziplis
t里面的数据项个数。实际上,一个quicklist
节点上的ziplist
,如果被压缩,就是整体被压缩的。
-
quickList
默认的压缩深度为0,也就是不开启压缩 - 当
list-compress-depth
为1,表示quickList
的两端各有1个节点不进行压缩,中间结点进行压缩; - 当
list-compress-depth
为2,表示quickList
的首尾2个节点不进行压缩,中间结点进行压缩; - 以此类推
从上面可以看出,对于quickList
来说,其首尾两个节点永远不会被压缩。
5|0 总结