参考文献:http://www.hadooper.cn/dct/page/65777
1排序实例
排序实例仅仅用 map/reduce框架来把输入目录排序放到输出目录。输入和输出必须是顺序文件,键和值是BytesWritable.
mapper是预先定义的IdentityMapper,reducer 是预先定义的 IdentityReducer, 两个都是把输入直接的输出。
要运行这个例 子:bin/hadoop jar hadoop-*-examples.jar sort [-m <#maps>] [-r <#reduces>] <in-dir> <out-dir>
2运行排序基准测试
为了使得排序例子作为一个 基准测试,用 RandomWriter产 生10GB/node 的数据。然后用排序实例来进行排序。这个提供了一个可扩展性依赖于集群的大小的排序基准。默认情况下,排序实例用1.0*capacity作为 reduces的数量,依赖于你的集群的大小你可能会在1.75*capacity的情况下得到更好的结果。
To use the sort example as a benchmark, generate 10GB/node of random data using RandomWriter. Then sort the data using the sort example. This provides a sort benchmark that scales depending on the size of the cluster. By default, the sort example uses 1.0 * capacity for the number of reduces and depending on your cluster you may see better results at 1.75 * capacity.
命令是:
% bin/hadoop jar hadoop-*-examples.jar randomwriter rand
% bin/hadoop jar hadoop-*-examples.jar sort rand rand-sort
排序的数据。第二个命令会读数据,排序,然后写入rand-sort 目录
排序支持一般的选项:参见DevelopmentCommandLineOptions
3具体实验
3.1代码实例Sort.java
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.examples;
import java.io.IOException;
import java.net.URI;
import java.util.*;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.mapred.lib.IdentityMapper;
import org.apache.hadoop.mapred.lib.IdentityReducer;
import org.apache.hadoop.mapred.lib.InputSampler;
import org.apache.hadoop.mapred.lib.TotalOrderPartitioner;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
/**
* This is the trivial map/reduce program that does absolutely nothing
* other than use the framework to fragment and sort the input values.
*
* To run: bin/hadoop jar build/hadoop-examples.jar sort
* [-m <i>maps</i>] [-r <i>reduces</i>]
* [-inFormat <i>input format class</i>]
* [-outFormat <i>output format class</i>]
* [-outKey <i>output key class</i>]
* [-outValue <i>output value class</i>]
* [-totalOrder <i>pcnt</i> <i>num samples</i> <i>max splits</i>]
* <i>in-dir</i> <i>out-dir</i>
*/
public class Sort<K,V> extends Configured implements Tool {
private RunningJob jobResult = null;
static int printUsage() {
System.out.println("sort [-m <maps>] [-r <reduces>] " +
"[-inFormat <input format class>] " +
"[-outFormat <output format class>] " +
"[-outKey <output key class>] " +
"[-outValue <output value class>] " +
"[-totalOrder <pcnt> <num samples> <max splits>] " +
"<input> <output>");
ToolRunner.printGenericCommandUsage(System.out);
return -1;
}
/**
* The main driver for sort program.
* Invoke this method to submit the map/reduce job.
* @throws IOException When there is communication problems with the
* job tracker.
*/
public int run(String[] args) throws Exception {
JobConf jobConf = new JobConf(getConf(), Sort.class);
jobConf.setJobName("sorter");
jobConf.setMapperClass(IdentityMapper.class);
jobConf.setReducerClass(IdentityReducer.class);
JobClient client = new JobClient(jobConf);
ClusterStatus cluster = client.getClusterStatus();
int num_reduces = (int) (cluster.getMaxReduceTasks() * 0.9);
String sort_reduces = jobConf.get("test.sort.reduces_per_host");
if (sort_reduces != null) {
num_reduces = cluster.getTaskTrackers() *
Integer.parseInt(sort_reduces);
}
Class<? extends InputFormat> inputFormatClass =
SequenceFileInputFormat.class;
Class<? extends OutputFormat> outputFormatClass =
SequenceFileOutputFormat.class;
Class<? extends WritableComparable> outputKeyClass = BytesWritable.class;
Class<? extends Writable> outputValueClass = BytesWritable.class;
List<String> otherArgs = new ArrayList<String>();
InputSampler.Sampler<K,V> sampler = null;
for(int i=0; i < args.length; ++i) {
try {
if ("-m".equals(args[i])) {
jobConf.setNumMapTasks(Integer.parseInt(args[++i]));
} else if ("-r".equals(args[i])) {
num_reduces = Integer.parseInt(args[++i]);
} else if ("-inFormat".equals(args[i])) {
inputFormatClass =
Class.forName(args[++i]).asSubclass(InputFormat.class);
} else if ("-outFormat".equals(args[i])) {
outputFormatClass =
Class.forName(args[++i]).asSubclass(OutputFormat.class);
} else if ("-outKey".equals(args[i])) {
outputKeyClass =
Class.forName(args[++i]).asSubclass(WritableComparable.class);
} else if ("-outValue".equals(args[i])) {
outputValueClass =
Class.forName(args[++i]).asSubclass(Writable.class);
} else if ("-totalOrder".equals(args[i])) {
double pcnt = Double.parseDouble(args[++i]);
int numSamples = Integer.parseInt(args[++i]);
int maxSplits = Integer.parseInt(args[++i]);
if (0 >= maxSplits) maxSplits = Integer.MAX_VALUE;
sampler =
new InputSampler.RandomSampler<K,V>(pcnt, numSamples, maxSplits);
} else {
otherArgs.add(args[i]);
}
} catch (NumberFormatException except) {
System.out.println("ERROR: Integer expected instead of " + args[i]);
return printUsage();
} catch (ArrayIndexOutOfBoundsException except) {
System.out.println("ERROR: Required parameter missing from " +
args[i-1]);
return printUsage(); // exits
}
}
// Set user-supplied (possibly default) job configs
jobConf.setNumReduceTasks(num_reduces);
jobConf.setInputFormat(inputFormatClass);
jobConf.setOutputFormat(outputFormatClass);
jobConf.setOutputKeyClass(outputKeyClass);
jobConf.setOutputValueClass(outputValueClass);
// Make sure there are exactly 2 parameters left.
if (otherArgs.size() != 2) {
System.out.println("ERROR: Wrong number of parameters: " +
otherArgs.size() + " instead of 2.");
return printUsage();
}
FileInputFormat.setInputPaths(jobConf, otherArgs.get(0));
FileOutputFormat.setOutputPath(jobConf, new Path(otherArgs.get(1)));
if (sampler != null) {
System.out.println("Sampling input to effect total-order sort...");
jobConf.setPartitionerClass(TotalOrderPartitioner.class);
Path inputDir = FileInputFormat.getInputPaths(jobConf)[0];
inputDir = inputDir.makeQualified(inputDir.getFileSystem(jobConf));
Path partitionFile = new Path(inputDir, "_sortPartitioning");
TotalOrderPartitioner.setPartitionFile(jobConf, partitionFile);
InputSampler.<K,V>writePartitionFile(jobConf, sampler);
URI partitionUri = new URI(partitionFile.toString() +
"#" + "_sortPartitioning");
DistributedCache.addCacheFile(partitionUri, jobConf);
DistributedCache.createSymlink(jobConf);
}
System.out.println("Running on " +
cluster.getTaskTrackers() +
" nodes to sort from " +
FileInputFormat.getInputPaths(jobConf)[0] + " into " +
FileOutputFormat.getOutputPath(jobConf) +
" with " + num_reduces + " reduces.");
Date startTime = new Date();
System.out.println("Job started: " + startTime);
jobResult = JobClient.runJob(jobConf);
Date end_time = new Date();
System.out.println("Job ended: " + end_time);
System.out.println("The job took " +
(end_time.getTime() - startTime.getTime()) /1000 + " seconds.");
return 0;
}
//input attr:/home/hadoop/rand/part-00000 /home/hadoop/rand-sort
public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new Configuration(), new Sort(), args);
System.exit(res);
}
/**
* Get the last job that was run using this instance.
* @return the results of the last job that was run
*/
public RunningJob getResult() {
return jobResult;
}
}
3.2在eclipse中设置参数:
/home/hadoop/rand/part-00000 /home/hadoop/rand-sort
其中/home/hadoop/rand/part-00000 表示输入路径,/home/hadoop/rand-sort表示输出路径
3.3数据来源
我们这里输入参数中的“/home/hadoop/rand/part-00000”是通过hadoop实例 RandomWriter 这个实例得到的。为了节省时间,hadoop实例 RandomWriter 中得到了两个文件,我们这里指使用了一个文件part-00000。如果要对两个文件都进行排序操作,那么输入路径只需要是目录即可。
4总结
本程序目前我测试只能在单机上执行,不能在集群上运行。即指可以run as ->java application,而不能run on hadoop,具体原因还没有找到,如果发现后续会更新本博客。
PS:2011-10-18
运行环境
3.一台主机即做master又做slave,另外一台单独做slave
11/10/18 09:24:35 WARN conf.Configuration: DEPRECATED: hadoop-site.xml found in the classpath. Usage of hadoop-site.xml is deprecated. Instead use core-site.xml, mapred-site.xml and hdfs-site.xml to override properties of core-default.xml, mapred-default.xml and hdfs-default.xml respectively
Running on 2 nodes to sort from hdfs://master:9000/home/hadoop/rand/part-00000 into hdfs://master:9000/home/hadoop/rand-sort with 3 reduces.
Job started: Tue Oct 18 09:24:35 CST 2011
11/10/18 09:24:35 INFO mapred.FileInputFormat: Total input paths to process : 1
11/10/18 09:24:36 INFO mapred.JobClient: Running job: job_201110180923_0001
11/10/18 09:24:37 INFO mapred.JobClient: map 0% reduce 0%
11/10/18 09:24:50 INFO mapred.JobClient: map 6% reduce 0%
11/10/18 09:24:51 INFO mapred.JobClient: map 18% reduce 0%
11/10/18 09:24:53 INFO mapred.JobClient: map 25% reduce 0%
11/10/18 09:24:56 INFO mapred.JobClient: map 31% reduce 0%
11/10/18 09:25:01 INFO mapred.JobClient: map 43% reduce 0%
11/10/18 09:25:02 INFO mapred.JobClient: map 49% reduce 0%
11/10/18 09:25:04 INFO mapred.JobClient: map 50% reduce 2%
11/10/18 09:25:08 INFO mapred.JobClient: map 56% reduce 4%
11/10/18 09:25:09 INFO mapred.JobClient: map 62% reduce 6%
11/10/18 09:25:11 INFO mapred.JobClient: map 68% reduce 8%
11/10/18 09:25:12 INFO mapred.JobClient: map 75% reduce 8%
11/10/18 09:25:14 INFO mapred.JobClient: map 81% reduce 9%
11/10/18 09:25:20 INFO mapred.JobClient: map 87% reduce 9%
11/10/18 09:25:23 INFO mapred.JobClient: map 93% reduce 12%
11/10/18 09:25:26 INFO mapred.JobClient: map 93% reduce 13%
11/10/18 09:25:27 INFO mapred.JobClient: map 100% reduce 14%
11/10/18 09:25:29 INFO mapred.JobClient: map 100% reduce 15%
11/10/18 09:25:35 INFO mapred.JobClient: map 100% reduce 16%
11/10/18 09:25:36 INFO mapred.JobClient: map 100% reduce 17%
11/10/18 09:27:49 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000000_0, Status : FAILED
Too many fetch-failures
11/10/18 09:27:49 WARN mapred.JobClient: Error reading task outputxuwei-laptop
11/10/18 09:27:49 WARN mapred.JobClient: Error reading task outputxuwei-laptop
11/10/18 09:28:05 INFO mapred.JobClient: map 100% reduce 18%
11/10/18 09:32:51 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000003_0, Status : FAILED
Too many fetch-failures
11/10/18 09:32:55 INFO mapred.JobClient: map 93% reduce 18%
11/10/18 09:32:58 INFO mapred.JobClient: map 100% reduce 18%
11/10/18 09:33:04 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000001_0, Status : FAILED
Too many fetch-failures
11/10/18 09:33:04 WARN mapred.JobClient: Error reading task outputxuwei-laptop
11/10/18 09:33:04 WARN mapred.JobClient: Error reading task outputxuwei-laptop
11/10/18 09:33:11 INFO mapred.JobClient: map 100% reduce 19%
11/10/18 09:33:20 INFO mapred.JobClient: map 100% reduce 20%
11/10/18 09:38:19 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000005_0, Status : FAILED
Too many fetch-failures
11/10/18 09:38:19 WARN mapred.JobClient: Error reading task outputxuwei-laptop
11/10/18 09:38:19 WARN mapred.JobClient: Error reading task outputxuwei-laptop
11/10/18 09:38:23 INFO mapred.JobClient: map 93% reduce 20%
11/10/18 09:38:26 INFO mapred.JobClient: map 100% reduce 20%
11/10/18 09:38:35 INFO mapred.JobClient: map 100% reduce 21%
11/10/18 09:38:41 INFO mapred.JobClient: map 100% reduce 22%
11/10/18 09:43:10 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000002_0, Status : FAILED
Too many fetch-failures
11/10/18 09:43:14 INFO mapred.JobClient: map 93% reduce 22%
11/10/18 09:43:17 INFO mapred.JobClient: map 100% reduce 22%
11/10/18 09:43:35 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000006_0, Status : FAILED
Too many fetch-failures
11/10/18 09:43:35 WARN mapred.JobClient: Error reading task outputxuwei-laptop
11/10/18 09:43:35 WARN mapred.JobClient: Error reading task outputxuwei-laptop
11/10/18 09:43:51 INFO mapred.JobClient: map 100% reduce 24%
11/10/18 09:48:50 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000009_0, Status : FAILED
Too many fetch-failures
11/10/18 09:48:50 WARN mapred.JobClient: Error reading task outputxuwei-laptop
11/10/18 09:48:50 WARN mapred.JobClient: Error reading task outputxuwei-laptop
11/10/18 09:49:06 INFO mapred.JobClient: map 100% reduce 25%
11/10/18 09:53:21 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000004_0, Status : FAILED
Too many fetch-failures
11/10/18 09:53:25 INFO mapred.JobClient: map 93% reduce 25%
11/10/18 09:53:28 INFO mapred.JobClient: map 100% reduce 25%
11/10/18 09:53:37 INFO mapred.JobClient: map 100% reduce 26%
11/10/18 09:54:05 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000011_0, Status : FAILED
Too many fetch-failures
11/10/18 09:54:05 WARN mapred.JobClient: Error reading task outputxuwei-laptop
11/10/18 09:54:05 WARN mapred.JobClient: Error reading task outputxuwei-laptop
11/10/18 09:54:21 INFO mapred.JobClient: map 100% reduce 27%
11/10/18 09:59:20 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000015_0, Status : FAILED
Too many fetch-failures
11/10/18 09:59:20 WARN mapred.JobClient: Error reading task outputxuwei-laptop
11/10/18 09:59:20 WARN mapred.JobClient: Error reading task outputxuwei-laptop
11/10/18 09:59:36 INFO mapred.JobClient: map 100% reduce 52%
11/10/18 09:59:42 INFO mapred.JobClient: map 100% reduce 53%
11/10/18 09:59:45 INFO mapred.JobClient: map 100% reduce 54%
11/10/18 09:59:48 INFO mapred.JobClient: map 100% reduce 55%
11/10/18 09:59:51 INFO mapred.JobClient: map 100% reduce 56%
11/10/18 09:59:54 INFO mapred.JobClient: map 100% reduce 57%
11/10/18 09:59:57 INFO mapred.JobClient: map 100% reduce 58%
11/10/18 10:00:00 INFO mapred.JobClient: map 100% reduce 60%
11/10/18 10:00:03 INFO mapred.JobClient: map 100% reduce 61%
11/10/18 10:00:06 INFO mapred.JobClient: map 100% reduce 62%
11/10/18 10:00:09 INFO mapred.JobClient: map 100% reduce 63%
11/10/18 10:00:12 INFO mapred.JobClient: map 100% reduce 64%
11/10/18 10:00:15 INFO mapred.JobClient: map 100% reduce 65%
11/10/18 10:00:18 INFO mapred.JobClient: map 100% reduce 66%
11/10/18 10:00:21 INFO mapred.JobClient: map 100% reduce 67%
11/10/18 10:00:24 INFO mapred.JobClient: map 100% reduce 68%
11/10/18 10:00:27 INFO mapred.JobClient: map 100% reduce 69%
11/10/18 10:00:30 INFO mapred.JobClient: map 100% reduce 70%
11/10/18 10:00:33 INFO mapred.JobClient: map 100% reduce 71%
11/10/18 10:00:36 INFO mapred.JobClient: map 100% reduce 72%
11/10/18 10:00:39 INFO mapred.JobClient: map 100% reduce 73%
11/10/18 10:00:52 INFO mapred.JobClient: map 100% reduce 75%
11/10/18 10:03:41 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000007_0, Status : FAILED
Too many fetch-failures
11/10/18 10:03:45 INFO mapred.JobClient: map 93% reduce 75%
11/10/18 10:03:48 INFO mapred.JobClient: map 100% reduce 75%
11/10/18 10:08:34 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000003_1, Status : FAILED
Too many fetch-failures
11/10/18 10:08:34 WARN mapred.JobClient: Error reading task outputxuwei-laptop
11/10/18 10:08:34 WARN mapred.JobClient: Error reading task outputxuwei-laptop
11/10/18 10:08:50 INFO mapred.JobClient: map 100% reduce 76%
11/10/18 10:13:53 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000008_0, Status : FAILED
Too many fetch-failures
11/10/18 10:13:57 INFO mapred.JobClient: map 93% reduce 76%
11/10/18 10:14:00 INFO mapred.JobClient: map 100% reduce 76%
11/10/18 10:18:49 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000002_1, Status : FAILED
Too many fetch-failures
11/10/18 10:18:49 WARN mapred.JobClient: Error reading task outputxuwei-laptop
11/10/18 10:18:49 WARN mapred.JobClient: Error reading task outputxuwei-laptop
11/10/18 10:19:05 INFO mapred.JobClient: map 100% reduce 77%
11/10/18 10:24:09 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000010_0, Status : FAILED
Too many fetch-failures
11/10/18 10:24:13 INFO mapred.JobClient: map 93% reduce 77%
11/10/18 10:24:16 INFO mapred.JobClient: map 100% reduce 77%
11/10/18 10:29:04 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000004_1, Status : FAILED
Too many fetch-failures
11/10/18 10:29:04 WARN mapred.JobClient: Error reading task outputxuwei-laptop
11/10/18 10:29:04 WARN mapred.JobClient: Error reading task outputxuwei-laptop
11/10/18 10:29:20 INFO mapred.JobClient: map 100% reduce 89%
11/10/18 10:29:23 INFO mapred.JobClient: map 100% reduce 91%
11/10/18 10:29:26 INFO mapred.JobClient: map 100% reduce 92%
11/10/18 10:29:29 INFO mapred.JobClient: map 100% reduce 93%
11/10/18 10:29:32 INFO mapred.JobClient: map 100% reduce 94%
11/10/18 10:29:35 INFO mapred.JobClient: map 100% reduce 95%
11/10/18 10:29:38 INFO mapred.JobClient: map 100% reduce 96%
11/10/18 10:29:41 INFO mapred.JobClient: map 100% reduce 97%
11/10/18 10:29:44 INFO mapred.JobClient: map 100% reduce 98%
11/10/18 10:29:50 INFO mapred.JobClient: map 100% reduce 100%
11/10/18 10:29:52 INFO mapred.JobClient: Job complete: job_201110180923_0001
11/10/18 10:29:52 INFO mapred.JobClient: Counters: 18
11/10/18 10:29:52 INFO mapred.JobClient: Job Counters
11/10/18 10:29:52 INFO mapred.JobClient: Launched reduce tasks=4
11/10/18 10:29:52 INFO mapred.JobClient: Launched map tasks=32
11/10/18 10:29:52 INFO mapred.JobClient: Data-local map tasks=32
11/10/18 10:29:52 INFO mapred.JobClient: FileSystemCounters
11/10/18 10:29:52 INFO mapred.JobClient: FILE_BYTES_READ=1075141899
11/10/18 10:29:52 INFO mapred.JobClient: HDFS_BYTES_READ=1077495458
11/10/18 10:29:52 INFO mapred.JobClient: FILE_BYTES_WRITTEN=2150285276
11/10/18 10:29:52 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=1077290017
11/10/18 10:29:52 INFO mapred.JobClient: Map-Reduce Framework
11/10/18 10:29:52 INFO mapred.JobClient: Reduce input groups=102334
11/10/18 10:29:52 INFO mapred.JobClient: Combine output records=0
11/10/18 10:29:52 INFO mapred.JobClient: Map input records=102334
11/10/18 10:29:52 INFO mapred.JobClient: Reduce shuffle bytes=1031027235
11/10/18 10:29:52 INFO mapred.JobClient: Reduce output records=102334
11/10/18 10:29:52 INFO mapred.JobClient: Spilled Records=204668
11/10/18 10:29:52 INFO mapred.JobClient: Map output bytes=1074566657
11/10/18 10:29:52 INFO mapred.JobClient: Map input bytes=1077289249
11/10/18 10:29:52 INFO mapred.JobClient: Combine input records=0
11/10/18 10:29:52 INFO mapred.JobClient: Map output records=102334
11/10/18 10:29:52 INFO mapred.JobClient: Reduce input records=102334
Job ended: Tue Oct 18 10:29:52 CST 2011
The job took 3916 seconds.