C++中要想在运行时获取类型信息,可没有Java中那么方便,Java中任何一个类都可以通过反射机制来获取类的基本信息(接口、父类、方法、属性、Annotation等),而且Java中还提供了一个关键字,可以在运行时判断一个类是不是另一个类的子类或者是该类的对象,但C++却没有这么多功能,C++中获得类信息只能通过RTTI机制,而且功能还是很有限的,因为C++中最终生成的代码是直接与机器相关的,而Java中会生成字节码文件,再由JVM加载运行,字节码文件中可以含有类的信息。

C++中RTTI的简单源程序示例:

 

class A{
private:
	int a;
};
class B{
public: 
	//加一个虚函数
	virtual void f(){}
};
class C:public B
{
public :
	void f(){};
};
class D:public A
{
public:
	void f(){}
};
int main()
{
	int a=2;
	//打印出int
	cout<<typeid(a).name()<<endl;
	A objA;
	//打印出class A
	cout<<typeid(objA).name()<<endl;
	B objB;
	//打印出class B
	cout<<typeid(objB).name()<<endl;
	C objC;
	//打印出class C
	cout<<typeid(objC).name()<<endl;
	/*
	//以下是多态在VC 6.0编译器不支持,但是在GCC以及微软更高版本的编译器却都是
    //支持的,且是在运行时候来确定类型的,而不是在编译器,会打印出class c
	B *ptr=new C();
	cout<<typeid(*ptr).name()<<endl;
	*/
	A *ptr=new D();
	//打印出class A而不是class D
	cout<<typeid(*ptr).name()<<endl;
	return 0;
}

 

要想理解上述代码:我们需要明白以下几个事实

1:typeid是一个关键字

2:typeid的结果有时候在编译期确定有时间会在执行期确定

3:typeid运行时,会将判断的结果存储在一个consttypeinfo&对象中

4:不同的编译器对typeid运算的结果差异很大,例如在VC 6.0与G++编译器中,G++编译器支持运行时动态确定类型,而VC 6.0则不支持。

1:typeid是一个关键字,可以在任意一本C++入门书中看到,typeid是一个关键字,像Sizeof一样,要是函数的话,函数传参你有见过这样的吗typeid(int),直接传int,而不是传一个整型值的,我是没见过:)

 

2:看看上述的程序,你会发现上述程序中除了多态的那一部份(在VC 6.0中是无法编译通过的),其他的均是在编译期运行,多态的会在执行期去运行,为了更具说服务力,看看下面的代码,是上面程序的部分汇编代码:

 

30:       //打印出int
31:       const type_info &t=typeid(a);//从下面的汇编代码中可以看出类型在编译期就已经确定了
004011C4   mov         dword ptr [ebp-14h],offset int `RTTI Type Descriptor' (00441e08)
32:       cout<<t.name()<<endl;
004011CB   push        offset @ILT+35(std::endl) (00401028)
004011D0   mov         ecx,dword ptr [ebp-14h]

从上面的程序,可以看出对于不是多态类型的,直接在编译器就解决了类型的确定,这样有利于减少程序的运行时间

 

对于多态类型(看看上面程序中注释掉部分代码在VS 2010中的反汇编代码):

 

	cout<<typeid(*ptr1).name()<<endl;
00A451B4  mov         esi,esp  
00A451B6  mov         eax,dword ptr ds:[00A5132Ch]  
00A451BB  push        eax  
00A451BC  mov         edi,esp  
00A451BE  push        0A5027Ch  
00A451C3  mov         ecx,dword ptr [ptr1]  
00A451C6  push        ecx  
;可以看出的是在这里调用了__RTtypeid函数,运行的时候来确定指针所指对象的真实类型
00A451C7  call        ___RTtypeid (0A414BAh)  
00A451CC  add         esp,4  
	cout<<typeid(*ptr1).name()<<endl;


从上面的汇编代码中可以看出的是对于类中有虚函数(多态)会在运行时决定类的类型

 

看看RTtypeid的实现吧

 

template<typename T>
const TypeDescriptor *__RTtypeid(const T *ptr)
{
    if (!ptr) throw new std::bad_typeid("Attempted a typeid of NULL pointer!");
    //获取指针把指对象的描述符,这里说明了一个问题,是对于多态类,里面会有一个指针指向这个描述符
    const _s_RTTICompleteObjectLocator *pCompleteLocator=GetCompleteObjectLocator(ptr);
    //获取其描述信息
    TypeDescriptor *pTypeDescriptor=pCompleteLocator->pTypeDescriptor;
    //如果未获取到,或者指针为空时,执行下面的逻辑
    if (!pTypeDescriptor) {
        throw std::__non_rtti_object("Bad read pointer - no RTTI data!");
    }
    return pTypeDescriptor;
}

这里的实现还是挺简单的,不是嘛:),其真实的实现原理是,每一个函数数类均有一个虚函数表, 编译器会将类的vftable(包括它自己的和从基类继承的)的第一个函数指针前面插入一个指向_s_RTTICompleteObjectLocator结构的指针(描述类信息的指针),这个结构中会存放该类的TypeDescriptor(上面的GetCompleteObjectLocator函数就是用来从vftable获得s_RTTICompleteObjectLocator结构的),因此,即使你将派生类的指针赋给基类的指针,你仍然可以利用上面的算法得到派生类的类型.

 

typeid关键字将类型信息存放在一个const type_info类中,看看这个类的具体源代码吧

 

class type_info {
public:
		//析构函数
    _CRTIMP virtual ~type_info();
    //重载的==操作符
    _CRTIMP int operator==(const type_info& rhs) const;
    //重载的!=操作符
    _CRTIMP int operator!=(const type_info& rhs) const;
    _CRTIMP int before(const type_info& rhs) const;//用于type_info对象之间的排序算法
    //返回类的名字
    _CRTIMP const char* name() const;
    _CRTIMP const char* raw_name() const;//返回类名称的编码字符串
private:
    //各种存储数据成员
    void *_m_data;
    char _m_d_name[1];
    //将拷贝构造函数与赋值构造函数设为了私有
    type_info(const type_info& rhs);
    type_info& operator=(const type_info& rhs);
};