题意:给定一个序列,然后有 m 个修改,问你最后的序列是什么,修改是这样的 l r v p 先算出从 l 到 r 这个区间内的 小于 v 的个数k,然后把第 p 个的值改成 k * u / (r - l + 1)。
析:分块,每块长度是sz,把每一块都排序。然后在每次修改的时候,只要计算出 l 和 r 所在块,中间的用二分可以算出来。注意同时要把分块中的数也改掉。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) //#define sz size() #define pu push_up #define pd push_down #define cl clear() #define all 1,n,1 #define FOR(i,x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 3e5 + 10; const int maxm = 1e5 + 10; const int mod = 50007; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, -1, 0, 1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } int a[maxn]; int b[560][560]; const int sz = 548; int main(){ int u; while(scanf("%d %d %d", &n, &m, &u) == 3){ int idx = 0, cnt = 0; for(int i = 0; i < n; ++i){ scanf("%d", a + i); b[idx][cnt] = a[i]; if(++cnt == sz){ ++idx; cnt = 0; } } for(int i = 0; i < idx; ++i) sort(b[i], b[i] + sz); if(cnt) sort(b[idx], b[idx] + cnt); while(m--){ int l, r, v, p; scanf("%d %d %d %d", &l, &r, &v, &p); --l, --r, --p; int lx = l / sz, rx = r / sz; int k = 0; if(lx == rx){ for(int i = l; i <= r; ++i) if(v > a[i]) ++k; } else { for(int i = l; i < (lx+1)*sz; ++i) if(v > a[i]) ++k; for(int i = rx*sz; i <= r; ++i) if(v > a[i]) ++k; for(int i = lx+1; i < rx; ++i) k += lower_bound(b[i], b[i] + sz, v) - b[i]; } int c = (LL)u * k / (r - l + 1); int old = a[p]; a[p] = c; int mx = p / sz; p = 0; while(b[mx][p] < old) ++p; b[mx][p] = c; while(p - 1 >= 0 && b[mx][p] < b[mx][p-1]) swap(b[mx][p], b[mx][p-1]), --p; while(p + 1 < sz && b[mx][p] > b[mx][p+1]) swap(b[mx][p], b[mx][p+1]), ++p; } for(int i = 0; i < n; ++i) printf("%d\n", a[i]); } return 0; }