一 常用脚本

1 打包脚本

脚本如下,下面附上ar 和 ranlib命令参考(命令来自于网络)

ALLLIB=*.a
FILE=`ls *.a`
#原来的库解压重命名

for F in $FILE
do
        ar x $F
        OBJ=`ar t $F`
        for O in $OBJ
        do
                mv $O ${F}_${O}
        done
done

#ar c 创建一个库,ar r 插入文件。ar s ==ranlib 向库中插入文件或者更新库

ar cr $ALLLIB *.o
ranlib $ALLLIB
mv $ALLLIB ../

mkdir -p tmp
mv *.o tmp

 

2 更新静态库

使用ar r 

3 合并静态库

ar 高级用法---使用ar脚本


第一步:
我们在命令终端中一次输入
echo CREATE libyuerapi.a > ar.mac 回车
echo SAVE >> ar.mac 回车
echo END >> ar.mac 回车
ar -M < ar.mac

我们可一个通过cat ar.mac看到ar.mac文件中的内容,而且我们也可以看到有一个libyuerapi.a生成了。目前其实里面什么都没有。

第二步:
上一步我们已经成功的创建了libyuerapi.a文件,现在我们向其中添加.o文件
ar -q libyuerapi.a yuer1.o
ar -q libyuerapi.a yuer2.o
ar -q libyuerapi.a yuer3.o

第三步:
把libyucom.a添加到libyuerapi.a库文件中
我们以同样的方式创建一个ar.mac文件
echo OPEN libyuerapi.a > ar.mac 回车
echo ADDLIB libyucom1.a >> ar.mac 回车
echo SAVE >> ar.mac 回车
echo END >> ar.mac 回车
ar -M < ar.mac 回车


 二 具体说明


当我们的程序中有经常使用的模块,而且这种模块在其他程序中也会用到,这时按照软件重用的思想,我们应该将它们生成库,使得以后编程可以减少开发代码量。这里介绍两个命令ar和nm,用来对库操作。


ar基本用法

 当我们的程序中有经常使用的模块,而且这种模块在其他程序中也会用到,这时按照软件重用的思想,我们应该将它们生成库,使得以后编程可以减少开发代码量。这里介绍两个命令ar和nm,用来对库操作。


  ar命令可以用来创建、修改库,也可以从库中提出单个模块。库是一单独的文件,里面包含了按照特定的结构组织起来的其它的一些文件(称做此库文件的member)。原始文件的内容、模式、时间戳、属主、组等属性都保留在库文件中。

  下面是ar命令的格式:

  ar [-]{dmpqrtx}[abcfilNoPsSuvV] [membername] [count] archive files...

  例如我们可以用ar rv libtest.a hello.o hello1.o 来 生成一个库,库名字是test,链接时可以用-ltest链接。该库中存放了两个模块hello.o和hello1.o。选项前可以有‘-'字符,也可以 没有。下面我们来看看命令的操作选项和任选项。现在我们把{dmpqrtx}部分称为操作选项,而[abcfilNoPsSuvV]部分称为任选项。

  {dmpqrtx}中的操作选项在命令中只能并且必须使用其中一个,它们的含义如下:

  • d:从库中删除模块。按模块原来的文件名指定要删除的模块。如果使用了任选项v则列出被删除的每个模块。
  • m:该操作是在一个库中移动成员。当库中如果有若干模块有相同的符号定义(如函数定义),则成员的位置顺序很重要。如果没有指定任选项,任何指定的成员将移到库的最后。也可以使用'a','b',或'I'任选项移动到指定的位置。
  • p:显示库中指定的成员到标准输出。如果指定任选项v,则在输出成员的内容前,将显示成员的名字。如果没有指定成员的名字,所有库中的文件将显示出来。
  • q:快速追加。增加新模块到库的结尾处。并不检查是否需要替换。'a','b',或'I'任选项对此操作没有影响,模块总是追加的库的结尾处。如果使用了任选项v则列出每个模块。 这时,库的符号表没有更新,可以用'ar s'或ranlib来更新库的符号表索引。
  • r:在库中插入模块(替换)。当插入的模块名已经在库中存在,则替换同名的模块。如果若干模块中有一个模块在库中不存在,ar显示一个错误消息,并不替换其他同名模块。默认的情况下,新的成员增加在库的结尾处,可以使用其他任选项来改变增加的位置。
  • t:显示库的模块表清单。一般只显示模块名。
  • x:从库中提取一个成员。如果不指定要提取的模块,则提取库中所有的模块。

  下面在看看可与操作选项结合使用的任选项:

  • a:在库的一个已经存在的成员后面增加一个新的文件。如果使用任选项a,则应该为命令行中membername参数指定一个已经存在的成员名。
  • b:在库的一个已经存在的成员前面增加一个新的文件。如果使用任选项b,则应该为命令行中membername参数指定一个已经存在的成员名。
  • c:创建一个库。不管库是否存在,都将创建。
  • f:在库中截短指定的名字。缺省情况下,文件名的长度是不受限制的,可以使用此参数将文件名截短,以保证与其它系统的兼容。
  • i:在库的一个已经存在的成员前面增加一个新的文件。如果使用任选项i,则应该为命令行中membername参数指定一个已经存在的成员名(类似任选项b)。
  • l:暂未使用
  • N:与count参数一起使用,在库中有多个相同的文件名时指定提取或输出的个数。
  • o:当提取成员时,保留成员的原始数据。如果不指定该任选项,则提取出的模块的时间将标为提取出的时间。
  • P:进行文件名匹配时使用全路径名。ar在创建库时不能使用全路径名(这样的库文件不符合POSIX标准),但是有些工具可以。
  • s:写入一个目标文件索引到库中,或者更新一个存在的目标文件索引。甚至对于没有任何变化的库也作该动作。对一个库做ar s等同于对该库做ranlib。
  • S:不创建目标文件索引,这在创建较大的库时能加快时间。
  • u:一般说来,命令ar r...插入所有列出的文件到库中,如果你只想插入列出文件中那些比库中同名文件新的文件,就可以使用该任选项。该任选项只用于r操作选项。
  • v:该选项用来显示执行操作选项的附加信息。
  • V:显示ar的版本。

 对于每一个符号,nm列出其值(the symbol value),类型(the symbol type)和其名字(the symbol name)。

例如,

  对于每一个符号,nm列出其值(the symbol value),类型(the symbol type)和其名字(the symbol name)。如下例:
00000024 T cleanup_before_linux
00000018 T cpu_init
00000060 T dcache_disable
00000054 T dcache_enable
0000006c T dcache_status
00000000 T do_reset
0000003c T icache_disable
00000030 T icache_enable
00000048 T icache_status
    上面的显示是使用nm cpu.o的输出,对于cleanup_before_linux这个符号来说,00000024是以16进制显示的其值,T为其类型,而cleanup_before_linux是其名字。可以看出,上面显示的cleanup_before_linux这个symbol的值实际上是该函数在text section中的偏移。但是,每个符号的值的具体含义依其类型而异。当然,对于每个符号的值,其类型、其值以及它们所属的section是密切相关的。

总结:

符号
类型
说明
A
该符号的值是绝对的,在以后的链接过程中,不允许进行改变。这样的符号值,常常出现在中断向量表中,例如用符号来表示各个中断向量函数在中断向量表中的位置。
B
该符号的值出现在非初始化数据段(bss)中。例如,在一个文件中定义全局static int test。则该符号test的类型为b,位于bss section中。其值表示该符号在bss段中的偏移。一般而言,bss段分配于RAM
C
该符号为commoncommon symbol是未初始话数据段。该符号没有包含于一个普通section中。只有在链接过程中才进行分配。符号的值表示该符号需要的字节数。例如在一个c文件中,定义int test,并且该符号在别的地方会被引用,则该符号类型即为C。否则其类型为B
D
该符号位于初始话数据段中。一般来说,分配到data section中。例如定义全局int baud_table[5] = {9600, 19200, 38400, 57600, 115200},则会分配于初始化数据段中
G
该符号也位于初始化数据段中。主要用于small object提高访问small data object的一种方式。
I
该符号是对另一个符号的间接引用。
N
该符号是一个debugging符号。
R
该符号位于只读数据区。例如定义全局const int test[] = {123, 123};test就是一个只读数据区的符号。注意在cygwin下如果使用gcc直接编译成MZ格式时,源文件中的test对应_test,并且其符号类型为D,即初始化数据段中。但是如果使用m6812-elf-gcc这样的交叉编译工具,源文件中的test对应目标文件的test,即没有添加下划线,并且其符号类型为R。一般而言,位于rodata section。值得注意的是,如果在一个函数中定义const char *test = “abc”, const char test_int = 3。使用nm都不会得到符号信息,但是字符串“abc”分配于只读存储器中,testrodata section中,大小为4
S
符号位于非初始化数据区,用于small object
T
该符号位于代码区text section
U
该符号在当前文件中是未定义的,即该符号的定义在别的文件中。例如,当前文件调用另一个文件中定义的函数,在这个被调用的函数在当前就是未定义的;但是在定义它的文件中类型是T。但是对于全局变量来说,在定义它的文件中,其符号类型为C,在使用它的文件中,其类型为U
V
该符号是一个weak object
W
The symbol is a weak symbol that has not been specifically tagged as a weak object symbol.
-
该符号是a.out格式文件中的stabs symbol
?
该符号类型没有定义

 

更新静态库的符号索引表 

本小节的内容相对简单。前边提到过,静态库文件需要使用“ar”来创建和维护。当给静态库增建一个成员时(加入一个.o文件到静态库中),“ar”可直接 将需要增加的.o文件简单的追加到静态库的末尾。之后当我们使用这个库进行连接生成可执行文件时,链接程序“ld”却提示错误,这可能是:主程序使用了之 前加入到库中的.o文件中定义的一个函数或者全局变量,但连接程序无法找到这个函数或者变量。 

这个问题的原因是:之前我们将编译完成的.o文件直接加入到了库的末尾,却并没有更新库的有效符号表。连接程序进行连接时,在静态库的符号索引表中无法定 位刚才加入的.o文件中定义的函数或者变量。这就需要在完成库成员追加以后让加入的所有.o文件中定义的函数(变量)有效,完成这个工作需要使用另外一个 工具“ranlib”来对静态库的符号索引表进行更新。 

我们所使用到的静态库(文档文件)中,存在这样一个特殊的成员,它的名字是“__.SYMDEF”。它包含了静态库中所有成员所定义的有效符号(函数名、 变量名)。因此,当为库增加了一个成员时,相应的就需要更新成员“__.SYMDEF”,否则所增加的成员中定义的所有的符号将无法被连接程序定位。完成 更新的命令是: 
ranlib ARCHIVEFILE 
通常在Makefile中我们可以这样来实现: 
libfoo.a: libfoo.a(x.o) libfoo.a(y.o) ... 
ranlib libfoo.a 

它所实现的是在更新静态库成员“x.o”和“y.o”之后,对静态库的成员“__.SYMDEF”进行更新(更新库的符号索引表)。 

如果我们使用GNU ar工具来维护、管理静态库,我们就不需要考虑这一步。GNU ar本身已经提供了在更新库的同时更新符号索引表的功能(这是默认行为,也可以通过命令行选项控制ar的具体行为。可参考 GNU ar工具的man手册)。

 

GNU工具中ar是用来制作库文件.a的,但同时还提供了一个ranlib,从手册上看ranlib相当于ar -s,为什么这样呢?

这是由于最早在Unix系统上ar程序是单纯用来打包多个.o到.a(类似于tar做的事情),而不处理.o里的符号表。Linker程序则需 要.a文件提供一个完整的符号表,所以当时就写了单独的ranlib程序用来产生linker所需要的符号信息。也就是说,产生一个对linker合 格的的.a文件需要做ar和ranlib两步 。

很快,Unix厂商就发现ranlib做得事情完全可以合并到ar里面去,于是ar程序的升级版本就包括了ranlib的功能,但早期的很多项目的Makefile都已经是按照两步式的方法生成.a,所以为了保证这些早期文件的兼容性,ranlib被保留下来了。

如今,GNU/Linux系统上,ranlib依然存在,当然大部分项目已经不使用它了,因为ar -s就做了ranlib的工作。
历史通常是进步和妥协的混合!