使用 NLTK 对文本进行清洗,索引工具
EN_WHITELIST = '0123456789abcdefghijklmnopqrstuvwxyz ' # space is included in whitelist
EN_BLACKLIST = '!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~\''
FILENAME = 'data/chat.txt'
limit = {
'maxq' : 20,
'minq' : 0,
'maxa' : 20,
'mina' : 3
}
UNK = 'unk'
VOCAB_SIZE = 6000
import random
import sys
import nltk
import itertools
from collections import defaultdict
import numpy as np
import pickle
def ddefault():
return 1
'''
read lines from file
return [list of lines]
'''
def read_lines(filename):
return open(filename).read().split('\n')[:-1]
'''
split sentences in one line
into multiple lines
return [list of lines]
'''
def split_line(line):
return line.split('.')
'''
remove anything that isn't in the vocabulary
return str(pure ta/en)
'''
def filter_line(line, whitelist):
return ''.join([ ch for ch in line if ch in whitelist ])
'''
read list of words, create index to word,
word to index dictionaries
return tuple( vocab->(word, count), idx2w, w2idx )
'''
def index_(tokenized_sentences, vocab_size):
# get frequency distribution
freq_dist = nltk.FreqDist(itertools.chain(*tokenized_sentences))
# get vocabulary of 'vocab_size' most used words
vocab = freq_dist.most_common(vocab_size)
# index2word
index2word = ['_'] + [UNK] + [ x[0] for x in vocab ]
# word2index
word2index = dict([(w,i) for i,w in enumerate(index2word)] )
return index2word, word2index, freq_dist
'''
filter too long and too short sequences
return tuple( filtered_ta, filtered_en )
'''
def filter_data(sequences):
filtered_q, filtered_a = [], []
raw_data_len = len(sequences)//2
for i in range(0, len(sequences), 2):
qlen, alen = len(sequences[i].split(' ')), len(sequences[i+1].split(' '))
if qlen >= limit['minq'] and qlen <= limit['maxq']:
if alen >= limit['mina'] and alen <= limit['maxa']:
filtered_q.append(sequences[i])
filtered_a.append(sequences[i+1])
# print the fraction of the original data, filtered
filt_data_len = len(filtered_q)
filtered = int((raw_data_len - filt_data_len)*100/raw_data_len)
print(str(filtered) + '% filtered from original data')
return filtered_q, filtered_a
'''
create the final dataset :
- convert list of items to arrays of indices
- add zero padding
return ( [array_en([indices]), array_ta([indices]) )
'''
def zero_pad(qtokenized, atokenized, w2idx):
# num of rows
data_len = len(qtokenized)
# numpy arrays to store indices
idx_q = np.zeros([data_len, limit['maxq']], dtype=np.int32)
idx_a = np.zeros([data_len, limit['maxa']], dtype=np.int32)
for i in range(data_len):
q_indices = pad_seq(qtokenized[i], w2idx, limit['maxq'])
a_indices = pad_seq(atokenized[i], w2idx, limit['maxa'])
#print(len(idx_q[i]), len(q_indices))
#print(len(idx_a[i]), len(a_indices))
idx_q[i] = np.array(q_indices)
idx_a[i] = np.array(a_indices)
return idx_q, idx_a
'''
replace words with indices in a sequence
replace with unknown if word not in lookup
return [list of indices]
'''
def pad_seq(seq, lookup, maxlen):
indices = []
for word in seq:
if word in lookup:
indices.append(lookup[word])
else:
indices.append(lookup[UNK])
return indices + [0]*(maxlen - len(seq))
def process_data():
print('\n>> Read lines from file')
lines = read_lines(filename=FILENAME)
# change to lower case (just for en)
lines = [ line.lower() for line in lines ]
print('\n:: Sample from read(p) lines')
print(lines[121:125])
# filter out unnecessary characters
print('\n>> Filter lines')
lines = [ filter_line(line, EN_WHITELIST) for line in lines ]
print(lines[121:125])
# filter out too long or too short sequences
print('\n>> 2nd layer of filtering')
qlines, alines = filter_data(lines)
print('\nq : {0} ; a : {1}'.format(qlines[60], alines[60]))
print('\nq : {0} ; a : {1}'.format(qlines[61], alines[61]))
# convert list of [lines of text] into list of [list of words ]
print('\n>> Segment lines into words')
qtokenized = [ wordlist.split(' ') for wordlist in qlines ]
atokenized = [ wordlist.split(' ') for wordlist in alines ]
print('\n:: Sample from segmented list of words')
print('\nq : {0} ; a : {1}'.format(qtokenized[60], atokenized[60]))
print('\nq : {0} ; a : {1}'.format(qtokenized[61], atokenized[61]))
# indexing -> idx2w, w2idx : en/ta
print('\n >> Index words')
idx2w, w2idx, freq_dist = index_( qtokenized + atokenized, vocab_size=VOCAB_SIZE)
print('\n >> Zero Padding')
idx_q, idx_a = zero_pad(qtokenized, atokenized, w2idx)
print('\n >> Save numpy arrays to disk')
# save them
np.save('idx_q.npy', idx_q)
np.save('idx_a.npy', idx_a)
# let us now save the necessary dictionaries
metadata = {
'w2idx' : w2idx,
'idx2w' : idx2w,
'limit' : limit,
'freq_dist' : freq_dist
}
# write to disk : data control dictionaries
with open('metadata.pkl', 'wb') as f:
pickle.dump(metadata, f)
def load_data(PATH=''):
# read data control dictionaries
with open(PATH + 'metadata.pkl', 'rb') as f:
metadata = pickle.load(f)
# read numpy arrays
idx_ta = np.load(PATH + 'idx_q.npy')
idx_en = np.load(PATH + 'idx_a.npy')
return metadata, idx_q, idx_a
if __name__ == '__main__':
process_data()