Proxy classes allow you to achieve some types of behavior that are otherwise difficult or impossible to implement. Multidimensional arrays are one example, lvalue/rvalue differentiation is a second, suppression of implicit conversions (see Item 5) is a third.

At the same time, proxy classes have disadvantages. As function return values, proxy objects are temporaries (see Item 19), so they must be created and destroyed. That's not free, though the cost may be more than recouped through their ability to distinguish write operations from read operations. The very existence of proxy classes increases the complexity of software systems that employ them, because additional classes make things harder to design, implement, understand, and maintain, not easier.

Finally, shifting from a class that works with real objects to a class that works with proxies often changes the semantics of the class, because proxy objects usually exhibit behavior that is subtly different from that of the real objects they represent. Sometimes this makes proxies a poor choice when designing a system, but in many cases there is little need for the operations that would make the presence of proxies apparent to clients. For instance, few clients will want to take the address of an Array1D object in the two-dimensional array example we saw at the beginning of this Item, and there isn't much chance that an ArrayIndex object (see Item 5) would be passed to a function expecting a different type. In many cases, proxies can stand in for real objects perfectly acceptably. When they can, it is often the case that nothing else will do.