<题目链接>
题目大意:
给出二维坐标轴上 n 个点,这 n 个点构成了一个城堡,国王想建一堵墙,城墙与城堡之间的距离总不小于一个数 L ,求城墙的最小长度,答案四舍五入.
解题分析:
求出这些点所围成的凸包,然后所围城墙的长度就为 该凸包周长 + 以该距离为半径的圆的周长。具体证明如下:
下面的模板还没有整理好
Graham 凸包算法
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define maxn 1100
const double pi = acos(-1.0);
struct Point {
int x, y;
}s[maxn];
int st[maxn], top;
int cross(Point p, Point p1, Point p2)
{
return (p1.x - p.x)*(p2.y - p.y) - (p2.x - p.x)*(p1.y - p.y);
}
double dist(Point p1, Point p2)
{
double tmp = (p1.x - p2.x)*(p1.x - p2.x) + (p1.y - p2.y)*(p1.y - p2.y);
return sqrt(tmp);
}
bool cmp(Point p1, Point p2)
{
int tmp = cross(s[0], p1, p2);
if (tmp>0) return true;
else if (tmp == 0 && dist(s[0], p1)<dist(s[0], p2)) return true;
else return false;
}
void Graham(int n)
{
if (n == 1) { top = 0; st[0] = 0; }
if (n == 2) { top = 1; st[0] = 0; st[1] = 1; }
if (n>2)
{
int i;
st[0] = 0, st[1] = 1;
top = 1;
for (i = 2; i<n; i++)
{
while (top>0 && cross(s[st[top - 1]], s[st[top]], s[i])<0) //不习惯s[st[top-1]]这种代码风格的可以改一下
top--;
st[++top] = i;
}
}
}
int main()
{
int n, l;
int ncase;
cin >> ncase;
while (ncase--)
{
scanf("%d %d", &n, &l);
Point p0;
scanf("%d%d", &s[0].x, &s[0].y);
p0.x = s[0].x, p0.y = s[0].y;
int k = 0;
for (int i = 1; i < n; i++)
{
scanf("%d%d", &s[i].x, &s[i].y);
if ((p0.y > s[i].y) || (p0.y == s[i].y&&p0.x > s[i].x))
{
p0.x = s[i].x;
p0.y = s[i].y;
k = i;
}
}
s[k] = s[0];
s[0] = p0;
sort(s + 1, s + n, cmp);
Graham(n);
double ans = 0;
for (int i = 0; i < top; i++)
{
ans += dist(s[st[i]], s[st[i + 1]]);
}
ans += dist(s[st[0]], s[st[top]]);
ans += 2 * pi*l;
printf("%d\n", (int)(ans + 0.5));
if (ncase)printf("\n");
}
return 0;
}
View Code
Andrew算法
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const double Pi=acos(-1.0);
struct Point{
double x,y;
Point(double x=0,double y=0):x(x),y(y){}
};
typedef Point Vector;
bool operator < (Point a,Point b){return a.x<b.x||(a.x==b.x&&a.y<b.y);}
Vector operator - (Point a,Point b){return Vector(a.x-b.x,a.y-b.y);}
double Dot(Vector a,Vector b){return a.x*b.x+a.y*b.y;}
double Length(Vector a){return sqrt(Dot(a,a));}
double Angle(Vector a,Vector b){return acos(Dot(a,b)/Length(a)/Length(b));}
Vector Rotate(Vector a,double rad){return Vector(a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad));}
double Cross(Vector a,Vector b){return a.x*b.y-a.y*b.x;}
Point operator + (Point a,Vector b){return Point(a.x+b.x,a.y+b.y);}
Point getdot(Point a,Vector b,double ang){return a+Rotate(b,ang);}
double getrad(double ang){return Pi*(ang/180);}
Point ans[2500],at[2500];
int nu;
double polygonArea(){
int k=0;
for(int i=0;i<nu;i++){
while(k>1&&Cross(ans[k-1]-ans[k-2],at[i]-ans[k-2])<=0)k--;
ans[k++]=at[i];
}
int p=k;
for(int i=nu-1;i>=0;i--){
while(k>p&&Cross(ans[k-1]-ans[k-2],at[i]-ans[k-2])<=0)k--;
ans[k++]=at[i];
}
double x=0;
k--;
if(k<2)return 0;
//求该凸多边形面积
for(int i=1;i<k-1;i++)x+=Cross(ans[i]-ans[0],ans[i+1]-ans[0]);
return x/2;
}
int main(){
int T,n;
double x,y,w,h,ang;
scanf("%d",&T);
while(T--){
double area1=0,area2=0;
nu=0;
scanf("%d",&n);
while(n--){
scanf("%lf%lf%lf%lf%lf",&x,&y,&w,&h,&ang);
area2+=w*h; //area储存所有矩形的总面积
Point a;
ang=-getrad(ang);//因为是顺时针旋转的,所以要是负的。。。。。
at[nu++]=getdot(Point(x,y),Vector(w/2,h/2),ang);
at[nu++]=getdot(Point(x,y),Vector(-w/2,h/2),ang);
at[nu++]=getdot(Point(x,y),Vector(w/2,-h/2),ang);
at[nu++]=getdot(Point(x,y),Vector(-w/2,-h/2),ang);
}
sort(at,at+nu);
area1=polygonArea();
// printf("%lf %lf\n",area1,area2);
printf("%.1lf %%\n",100*area2/area1);
}
return 0;
}
View Code
2018-08-04