SPOJ Problem Set (classical)

4. Transform the Expression

Problem code: ONP

 

Transform the algebraic expression with brackets into RPN form (Reverse Polish Notation). Two-argument operators: +, -, *, /, ^ (priority from the lowest to the highest), brackets ( ). Operands: only letters: a,b,...,z. Assume that there is only one RPN form (no expressions like a*b*c).

Input

t [the number of expressions <= 100]
expression [length <= 400]
[other expressions]

Text grouped in [ ] does not appear in the input file.

Output

The expressions in RPN form, one per line.

Example

Input:
3
(a+(b*c))
((a+b)*(z+x))
((a+t)*((b+(a+c))^(c+d)))

Output:
abc*+
ab+zx+*
at+bac++cd+^*

Added by: Michał Małafiejski
Date: 2004-05-01
Time limit: 5s
Source limit: 50000B
Languages: All except: PERL 6
Resource: -








中文意思:

将带括号的代数表达式转换成逆波兰表示法。二元操作符:+, -, *, /, ^(优先级由低到高排列)。

操作对象:就是字母a到z,假设只有一种逆波兰表示形式(没有这样的表达式:a*b*c)

输入:

t:表达式的个数(表达式的数目小于1000)

expression  表达式的长度小于400

其他表达式

输出:

逆波兰表示形式的表达式,每行一个

例子:

Input:
3
(a+(b*c))
((a+b)*(z+x))
((a+t)*((b+(a+c))^(c+d)))

Output:
abc*+
ab+zx+*
at+bac++cd+^*

解决这样的问题的实际应用是什么?