SPOJ Problem Set (classical)4. Transform the ExpressionProblem code: ONP |
Transform the algebraic expression with brackets into RPN form (Reverse Polish Notation). Two-argument operators: +, -, *, /, ^ (priority from the lowest to the highest), brackets ( ). Operands: only letters: a,b,...,z. Assume that there is only one RPN form (no expressions like a*b*c).
Input
t [the number of expressions <= 100] expression [length <= 400] [other expressions]
Text grouped in [ ] does not appear in the input file.
Output
The expressions in RPN form, one per line.
Example
Input: 3 (a+(b*c)) ((a+b)*(z+x)) ((a+t)*((b+(a+c))^(c+d))) Output: abc*+ ab+zx+* at+bac++cd+^*
Added by: | Michał Małafiejski |
Date: | 2004-05-01 |
Time limit: | 5s |
Source limit: | 50000B |
Languages: | All except: PERL 6 |
Resource: | - |
中文意思:
将带括号的代数表达式转换成逆波兰表示法。二元操作符:+, -, *, /, ^(优先级由低到高排列)。
操作对象:就是字母a到z,假设只有一种逆波兰表示形式(没有这样的表达式:a*b*c)
输入:
t:表达式的个数(表达式的数目小于1000)
expression 表达式的长度小于400
其他表达式
输出:
逆波兰表示形式的表达式,每行一个
例子:
Input:
3
(a+(b*c))
((a+b)*(z+x))
((a+t)*((b+(a+c))^(c+d)))
Output:
abc*+
ab+zx+*
at+bac++cd+^*
解决这样的问题的实际应用是什么?