上一篇《秒杀多线程第三篇原子操作 Interlocked系列函数》中介绍了原子操作在多进程中的作用,如今来个复杂点的。这个问题涉及到线程的同步和相互排斥,是一道很有代表性的多线程同步问题,假设能将这个问题搞清楚,那么对多线程同步也就打下了良好的基础。
程序描写叙述:
主线程启动10个子线程并将表示子线程序号的变量地址作为參数传递给子线程。子线程接收參数 -> sleep(50) -> 全局变量++ -> sleep(0) -> 输出參数和全局变量。
要求:
1.子线程输出的线程序号不能反复。
2.全局变量的输出必须递增。
分析下这个问题的考察点,主要考察点有二个:
1.主线程创建子线程并传入一个指向变量地址的指针作參数,因为线程启动需要花费一定的时间,所以在子线程依据这个指针訪问并保存数据前,主线程应等待子线程保存完成后才干修改该參数并启动下一个线程。这涉及到主线程与子线程之间的同步。
2.子线程之间会相互排斥的修改和输出全局变量。要求全局变量的输出必须递增。这涉及到各子线程间的相互排斥。
以下列出这个程序的基本框架,能够在此代码基础上进行修改和验证。
//经典线程同步相互排斥问题
#include <stdio.h>
#include <process.h>
#include <windows.h>
long g_nNum; //全局资源
unsigned int __stdcall Fun(void *pPM); //线程函数
const int THREAD_NUM = 10; //子线程个数
int main()
{
g_nNum = 0;
HANDLE handle[THREAD_NUM];
int i = 0;
while (i < THREAD_NUM)
{
handle[i] = (HANDLE)_beginthreadex(NULL, 0, Fun, &i, 0, NULL);
i++;//等子线程接收到參数时主线程可能改变了这个i的值
}
//保证子线程已所有执行结束
WaitForMultipleObjects(THREAD_NUM, handle, TRUE, INFINITE);
return 0;
}
unsigned int __stdcall Fun(void *pPM)
{
//因为创建线程是要一定的开销的,所以新线程并不能第一时间运行到这来
int nThreadNum = *(int *)pPM; //子线程获取參数
Sleep(50);//some work should to do
g_nNum++; //处理全局资源
Sleep(0);//some work should to do
printf("线程编号为%d 全局资源值为%d\n", nThreadNum, g_nNum);
return 0;
}
执行结果能够參考下列图示,强烈建议读者亲自试一试。
能够看出,执行结果全然是混乱和不可预知的。本系列将会运用Windows平台下各种手段包含关键段,事件,相互排斥量,信号量等等来解决问题并作一份全面的总结,敬请关注。