注明:本文是由本人在开发有关基于lucene资源检索系统时的一点总结,当中一部分是自己依据开发过程自己总结的,也有部分是摘自网络,因无法获取当时摘文的地址,所以在此没有写源地址。

转载请声明出处

 

Lucene-3.0.0配置


一、Lucene开发环境配置

 

step1.Lucene开发包下载

 

step2.Java开发环境配置

 

step3.Tomcat安装

 

step4.Lucene开发环境配置

 

解压下载的lucene-3.0.0.zip,能够看到lucene-core-3.0.0.jar和lucene-demos-3.0.0.jar这两个文件,将其解压(建议放在安装jdk的lib目录内),并把路径加入到环境变量的classpath。

二、Lucene开发包中Demo调试

控制台应用程序

step1.建立索引

>java org.apache.lucene.demo.IndexFiles [C:\Java](已经存在的随意文件路径)

将对C:\Java下全部文件建立索引,同一时候,在当前命令行位置将生成“index”目录。

step2.执行查询

>java org.apache.lucene.demo.SearchFiles

将会出现“Query:”提示符,在其后输入keyword,回车,就可以得到查询结果。

Web应用程序

step1.将lucene-core-3.0.0.jar和lucene-demos-3.0.0jar这两个文件拷贝到安装Tomcat 的\common\lib中

step2.解压下载的lucene-3.0.0.zip,能够看到luceneweb.war文件。将该文件拷贝到安装Tomcat的\webapps

step3.重新启动Tomcatserver。

step4.建立索引

 

>java org.apache.lucene.demo.IndexHTML -create -index [索引数据存放路径] [被索引文件路径](如:D:\lucene\temp\index D:\lucene\temp\docs)

step5.打开安装Tomcat的\webapps\luceneweb\configuration.jsp文件,找到String indexLocation = "***",将"***"改为第四步中[索引数据存放路径],保存关闭。

step6.执行查询

​http://localhost:8080/luceneweb​

在文本框中输入keyword,执行,就可以得到查询结果。

 

说明:本文採用lucene-3.0.0版本号,执行step6 时查询报错,依据提示将安装Tomcat的webapps\luceneweb\results.jsp 中

[    QueryParser qp = new QueryParser("contents", analyzer);     ]     改动为

[    QueryParser qp = new QueryParser(Version.LUCENE_CURRENT,"contents", analyzer);    ]

 

注:本文參考​​YM's house​


​lucene的demo环境搭建​​ 

总结一下lucene的环境搭建,查看以及了解lucene的原理,对其有个大概的了解。

 

1、下载lucene2.3.2

地址:​​http://apache.mirror.phpchina.com/lucene/java/​

2、下载jdk1.6

3、下载tomcat

 

下载以上内容完毕后,開始安装。

1、安装jdk

一路确定下去,无需选择。

2、安装tomcat

一路确定下去,无需选择。

3、解压文件就可以

假设解压文件路径为d:\lucene\

如今能够建立目录(此处的目录为我们要进行检索的信息的原始数据文件,我们放置在docs中,还有一个是lucene生成的检索信息,我们放置于index中),即能够在d:\lucene下建立一个temp\docs以及temp\index,此处两个目录目录能够随意,当然不一定非得放置于d:\lucene。

然后将须要检索的原始数据文件放置于docs目录中。

拷贝解压的lucene目录中的lucene-core-2.3.2.jar以及lucene-demos-2.3.2.jar到temp目录中,解压。

 

假设没有配置jdk环境,參考下方:

打开我的电脑-属性-高级-环境变量:

在系统变量中加入:

JAVA_HOME C:\Program Files\Java\jdk1.6.0

PATH %JAVA_HOME%\bin

CLASSPATH .;%JAVA_HOME%\lib\tools.jar;%JAVA_HOME%\jre\lib\rt.jar;

 

打开命令行:将目录定位到temp目录。

输入命令:

java org.apache.lucene.demo.IndexHTML -create -index D:\lucene\temp\index D:\lucene\temp\docs

即建立索引与原始数据文件的关系。

 

完毕后,会发现index目录中多处一部分数据,以后再研究。

 

然后找到tomcat的安装目录,拷贝lucene中的luceneweb.war进入tomcat的webapps\目录中,启动tomcat,会看见webapps\下多出一个目录,找到configuration.jsp文件,将当中的String indexLocation = "/opt/lucene/index";改动为String indexLocation = "D:/lucene/temp/index";就是刚才生成的文件。

 

打开浏览器,输入​​http://127.0.0.1:8080/luceneweb/​

 

输入须要查询的信息,看看结果怎样。

 

 

简单地说:首先建立索引文件放置目录,cmd命令生成索引文件,部署project,改动project文件里目标为索引文件目录。

搜索引擎的组成

 搜索引擎一般由搜索器、索引器、检索器和​​用户接口​​四个部分组成: 

搜索器

  其功能是在互联网中漫游,发现和搜集信息; 

索引器

  其功能是理解搜索器所搜索到的信息,从中抽取出索引项,用于表示文档以及生成文档库的索引表; 

检索器

  其功能是依据用户的查询在索引库中高速检索文档,进行相关度评价,对将要输出的结果排序,并能按用户的查询需求合理反馈信息; 

用户接口

  其作用是接纳用户查询、显示查询结果、提供个性化查询项。

d:\lucene\index是上一篇学习笔记([​​Lucene3.0学习笔记1(建立索引)​​] )中生成的索引文件的存放地址。详细步骤简单介绍例如以下:

1、创建Directory对象,索引目录

2、创建IndexSearch对象,建立查询(參数是Directory对象)

3、创建QueryParser对象(lucene版本号,查询Field字段,所用分词器)

4、生成Query对象,由QueryParser对象的parse函数生成(參数是所查的keyword)

5、建立TopDocs对象(IndexSearch的search函数,參数是Query查询对象,)

6、TopDocs对象数组里存放查询信息

7、关闭IndexSearch

索引创建和搜索过程所一个总结

Lucene教程

Lucene是apache组织的一个用java实现全文搜索引擎的开源项目。 其功能非常的强大,api也非常easy。总得来说用Lucene来进行建立 和搜索和操作数据库是差点儿相同的(有点像),Document能够看作是 数据库的一行记录,Field能够看作是数据库的字段。用lucene实 现搜索引擎就像用JDBC实现连接数据库一样简单。 

Lucene2.0,它与曾经广泛应用和介绍的Lucene 1.4.3并不兼容。 Lucene2.0的下载地址是​​http://apache.justdn.org/lucene/java/​​ 

样例一 :


1、在windows系统下的的C盘,建一个名叫s的目录,在该目录里面随便建三个txt文件,随便起名啦,就叫"1.txt","2.txt"和"3.txt"啦 

当中1.txt的内容例如以下: 

中华人民共和国   

全国人民   

2006年   

而"2.txt"和"3.txt"的内容也能够随便写几写,这里懒写,就复制一个和1.txt文件的内容一样吧


2、下载lucene包,放在classpath路径中 

建立索引:

package  lighter.javaeye.com;   

  

import  java.io.BufferedReader;   

import  java.io.File;   

import  java.io.FileInputStream;   

import  java.io.IOException;   

import  java.io.InputStreamReader;   

import  java.util.Date;   

  

import  org.apache.lucene.analysis.Analyzer;   

import  org.apache.lucene.analysis.standard.StandardAnalyzer;   

import  org.apache.lucene.document.Document;   

import  org.apache.lucene.document.Field;   

import  org.apache.lucene.index.IndexWriter;   

  

/** */ /**   

 * author lighter date 2006-8-7  

  */   

public   class  TextFileIndexer  {   

     public   static   void  main(String[] args)  throws  Exception  {   

         /**/ /*  指明要索引目录的位置,这里是C盘的S目录下  */   

        File fileDir  =   new  File( " c://s " );   

  

         /**/ /*  这里放索引文件的位置  */   

        File indexDir  =   new  File( " c://index " );   

        Analyzer luceneAnalyzer  =   new  StandardAnalyzer();  //建立一个标准分析器 

        IndexWriter indexWriter  =   new  IndexWriter(indexDir, luceneAnalyzer,   

                 true );   //创建一个索引器

        File[] textFiles  =  fileDir.listFiles();   

         long  startTime  =   new  Date().getTime();   

           

         //添加document到索引去    

         for  ( int  i  =   0 ; i  <  textFiles.length; i ++ )  {   

             if  (textFiles[i].isFile()   

                     &&  textFiles[i].getName().endsWith( " .txt " ))  {   

                System.out.println( " File  "   +  textFiles[i].getCanonicalPath()   

                         +   "正在被索引 . " );   

                String temp  =  FileReaderAll(textFiles[i].getCanonicalPath(),   

                         " GBK " );   

                System.out.println(temp);   

                Document document  =   new  Document();  //Document是一个记录。用来表示一个条目。就是搜索建立的倒排索引的条目。比方说,你要搜索自己电脑上的文件。这个时候就能够创建field。然后用field组合成 document 。最后会变成若干文件。这个document和 文件系统document不是一个概念。 

                Field FieldPath  =   new  Field( " path " , textFiles[i].getPath(),   

                        Field.Store.YES, Field.Index.NO);   //创建一个字段

                Field FieldBody  =   new  Field( " body " , temp, Field.Store.YES,   

                        Field.Index.TOKENIZED,   

                        Field.TermVector.WITH_POSITIONS_OFFSETS);   

                document.add(FieldPath);   

                document.add(FieldBody);   

                indexWriter.addDocument(document);   

            }    

        }    

         // optimize()方法是对索引进行优化    

        indexWriter.optimize();   

        indexWriter.close();   

           

         //測试一下索引的时间    

         long  endTime  =   new  Date().getTime();   

        System.out   

                .println( "这花费了 "   

                         +  (endTime  -  startTime)   

                         +   "  毫秒来把文档添加到索引里面去! "   

                         +  fileDir.getPath());   

    }    

  

     public   static  String FileReaderAll(String FileName, String charset)   

             throws  IOException  {   

        BufferedReader reader  =   new  BufferedReader( new  InputStreamReader(   

                 new  FileInputStream(FileName), charset));   

        String line  =   new  String();   

        String temp  =   new  String();   

           

         while  ((line  =  reader.readLine())  !=   null )  {   

            temp  +=  line;   

        }    

        reader.close();   

         return  temp;   

    }    

}  

索引的结果: 

File C:/s/ 1 .txt正在被索引 .   

中华人民共和国全国人民2006年   

File C:/s/ 2 .txt正在被索引 .   

中华人民共和国全国人民2006年   

File C:/s/ 3 .txt正在被索引 .   

中华人民共和国全国人民2006年   

这花费了297 毫秒来把文档添加到索引里面去 ! c:/s  

3、建立了索引之后,查询啦....

package  lighter.javaeye.com;   

  

import  java.io.IOException;   

  

import  org.apache.lucene.analysis.Analyzer;   

import  org.apache.lucene.analysis.standard.StandardAnalyzer;   

import  org.apache.lucene.queryParser.ParseException;   

import  org.apache.lucene.queryParser.QueryParser;   

import  org.apache.lucene.search.Hits;   

import  org.apache.lucene.search.IndexSearcher;   

import  org.apache.lucene.search.Query;   

  

public   class  TestQuery  {   

     public   static   void  main(String[] args)  throws  IOException, ParseException  {   

        Hits hits  =   null ;   

        String queryString  =   "中华 " ;   

        Query query  =   null ;   

        IndexSearcher searcher  =   new  IndexSearcher( " c://index " );   

  

        Analyzer analyzer  =   new  StandardAnalyzer();   

         try   {   

            QueryParser qp  =   new  QueryParser( " body " , analyzer);   

            query  =  qp.parse(queryString);   

        }   catch  (ParseException e)  {   

        }    

         if  (searcher  !=   null )  {   

            hits  =  searcher.search(query);   

             if  (hits.length()  >   0 )  {   

                System.out.println( "找到: "   +  hits.length()  +   "  个结果! " );   

            }    

        }    

    }  

  

}   

其执行结果:

找到: 3  个结果 ! 

 

Lucene事实上非常easy的,它最主要就是做两件事:建立索引和进行搜索 

来看一些在lucene中使用的术语,这里并不打算作详细的介绍,仅仅是点一下而已----由于这一个世界有一种好东西,叫搜索。

IndexWriter:lucene中最重要的的类之中的一个,它主要是用来将文档加入索引,同一时候控制索引过程中的一些參数使用。

Analyzer:分析器,主要用于分析搜索引擎遇到的各种文本。经常使用的有StandardAnalyzer分析器,StopAnalyzer分析器,WhitespaceAnalyzer分析器等。

Directory:索引存放的位置;lucene提供了两种索引存放的位置,一种是磁盘,一种是内存。普通情况将索引放在磁盘上;对应地lucene提供了FSDirectory和RAMDirectory两个类。

Document:文档;Document相当于一个要进行索引的单元,不论什么能够想要被索引的文件都必须转化为Document对象才干进行索引。

Field:字段。

IndexSearcher:是lucene中最主要的检索工具,全部的检索都会用到IndexSearcher工具;

Query:查询,lucene中支持模糊查询,语义查询,短语查询,组合查询等等,如有TermQuery,BooleanQuery,RangeQuery,WildcardQuery等一些类。

QueryParser:是一个解析用户输入的工具,能够通过扫描用户输入的字符串,生成Query对象。

Hits:在搜索完毕之后,须要把搜索结果返回并显示给用户,仅仅有这样才算是完毕搜索的目的。在lucene中,搜索的结果的集合是用Hits类的实例来表示的。

上面作了一大堆名词解释,以下就看几个简单的实例吧:

 1、简单的的StandardAnalyzer測试样例 

 

package  lighter.javaeye.com;   

  

import  java.io.IOException;   

import  java.io.StringReader;   

  

import  org.apache.lucene.analysis.Analyzer;   

import  org.apache.lucene.analysis.Token;   

import  org.apache.lucene.analysis.TokenStream;   

import  org.apache.lucene.analysis.standard.StandardAnalyzer;   

  

public   class  StandardAnalyzerTest    

{   

     //构造函数,    

     public  StandardAnalyzerTest()   

     {   

    }    

     public   static   void  main(String[] args)    

     {   

         //生成一个StandardAnalyzer对象    

        Analyzer aAnalyzer  =   new  StandardAnalyzer();   

         //測试字符串    

        StringReader sr  =   new  StringReader( " lighter javaeye com is the are on " );   

         //生成TokenStream对象    

        TokenStream ts  =  aAnalyzer.tokenStream( " name " , sr);    

         try   {   

             int  i = 0 ;   

            Token t  =  ts.next();   

             while (t != null )   

             {   

                 //辅助输出时显示行号    

                i ++ ;   

                 //输出处理后的字符    

                System.out.println( "第 " + i + "行: " + t.termText());   

                 //取得下一个字符    

                t = ts.next();   

            }    

        }   catch  (IOException e)  {   

            e.printStackTrace();   

        }    

    }    

}    

显示结果:

第1行:lighter 

第2行:javaeye 

第3行:com 

提示一下: 

StandardAnalyzer是lucene中内置的"标准分析器",能够做例如以下功能:

 1、对原有句子依照空格进行了分词 

2、全部的大写字母都能够能转换为小写的字母 

3、能够去掉一些没实用处的单词,比如"is","the","are"等单词,也删除了全部的标点 

查看一下结果与"new StringReader("lighter javaeye com is the are on")"作一个比較就清楚明了。 

这里不正确其API进行解释了,详细见lucene的官方文档。须要注意一点,这里的代码使用的是lucene2的API,与1.43版有一些明显的区别。 

2、看还有一个实例,简单地建立索引,进行搜索 

package  lighter.javaeye.com;   

import  org.apache.lucene.analysis.standard.StandardAnalyzer;   

import  org.apache.lucene.document.Document;   

import  org.apache.lucene.document.Field;   

import  org.apache.lucene.index.IndexWriter;   

import  org.apache.lucene.queryParser.QueryParser;   

import  org.apache.lucene.search.Hits;   

import  org.apache.lucene.search.IndexSearcher;   

import  org.apache.lucene.search.Query;   

import  org.apache.lucene.store.FSDirectory;   

  

public   class  FSDirectoryTest  {   

  

     //建立索引的路径    

     public   static   final  String path  =   " c://index2 " ;   

  

     public   static   void  main(String[] args)  throws  Exception  {   

        Document doc1  =   new  Document();   

        doc1.add(  new  Field( " name " ,  " lighter javaeye com " ,Field.Store.YES,Field.Index.TOKENIZED));   

  

        Document doc2  =   new  Document();   

        doc2.add( new  Field( " name " ,  " lighter blog " ,Field.Store.YES,Field.Index.TOKENIZED));   

  

        IndexWriter writer  =   new  IndexWriter(FSDirectory.getDirectory(path,  true ),  new  StandardAnalyzer(),  true );   

        writer.setMaxFieldLength( 3 );   

        writer.addDocument(doc1);   

        writer.setMaxFieldLength( 3 );   

        writer.addDocument(doc2);   

        writer.close();   

  

        IndexSearcher searcher  =   new  IndexSearcher(path);   

        Hits hits  =   null ;   

        Query query  =   null ;   

        QueryParser qp  =   new  QueryParser( " name " , new  StandardAnalyzer());   

           

        query  =  qp.parse( " lighter " );   

        hits  =  searcher.search(query);   

        System.out.println( "查找/ " lighter/ "  共 "   +  hits.length()  +   "个结果 " );   

  

        query  =  qp.parse( " javaeye " );   

        hits  =  searcher.search(query);   

        System.out.println( "查找/ " javaeye/ "  共 "   +  hits.length()  +   "个结果 " );   

  

    }    

  

}   

执行结果:

查找 " lighter "  共2个结果   

查找 " javaeye "  共1个结果  

到如今我们已经能够用lucene建立索引了

以下介绍一下几个功能来完好一下:

1.索引格式


事实上索引目录有两种格式,


一种是除配置文件外,每个Document独立成为一个文件(这种搜索起来会影响速度)。


还有一种是全部的Document成一个文件,这样属于复合模式就快了。


2.索引文件可放的位置:


索引能够存放在两个地方1.硬盘,2.内存

放在硬盘上能够用FSDirectory(),放在内存的用RAMDirectory()只是一关机就没了

FSDirectory.getDirectory(File file,  boolean  create)

FSDirectory.getDirectory(String path,  boolean  create)

两个工厂方法返回目录

New RAMDirectory()就直接能够

再和

IndexWriter(Directory d, Analyzer a,  boolean  create)

一配合就可以了

如:

IndexWrtier indexWriter  =   new  IndexWriter(FSDirectory.getDirectory(“c://index”, true ), new  StandardAnlyazer(), true );

IndexWrtier indexWriter  =   new  IndexWriter( new  RAMDirectory(), new  StandardAnlyazer(), true );

3.索引的合并

这个可用

IndexWriter.addIndexes(Directory[] dirs)

将目录加进去

来看个样例:

public   void  UniteIndex()  throws  IOException

     {

        IndexWriter writerDisk  =   new  IndexWriter(FSDirectory.getDirectory( " c://indexDisk " ,  true ), new  StandardAnalyzer(), true );

        Document docDisk  =   new  Document();

        docDisk.add( new  Field( " name " , "程序猿之家 " ,Field.Store.YES,Field.Index.TOKENIZED));

        writerDisk.addDocument(docDisk);

        RAMDirectory ramDir  =   new  RAMDirectory();

        IndexWriter writerRam  =   new  IndexWriter(ramDir, new  StandardAnalyzer(), true );

        Document docRam  =   new  Document();

        docRam.add( new  Field( " name " , "程序猿杂志 " ,Field.Store.YES,Field.Index.TOKENIZED));

        writerRam.addDocument(docRam);

        writerRam.close(); //这种方法非常重要,是必须调用的 

        writerDisk.addIndexes( new  Directory[] {ramDir} );

        writerDisk.close();

    } 

     public   void  UniteSearch()  throws  ParseException, IOException

     {

        QueryParser queryParser  =   new  QueryParser( " name " , new  StandardAnalyzer());

        Query query  =  queryParser.parse( "程序猿 " );

        IndexSearcher indexSearcher  = new  IndexSearcher( " c://indexDisk " );

        Hits hits  =  indexSearcher.search(query);

        System.out.println( "找到了 " + hits.length() + "结果 " );

         for ( int  i = 0 ;i

         {

            Document doc  =  hits.doc(i);

            System.out.println(doc.get( " name " ));

        } 

}

这个样例是将内存中的索引合并到硬盘上来.

注意:合并的时候一定要将被合并的那一方的IndexWriter的close()方法调用。


4.对索引的其它操作:

IndexReader类是用来操作索引的,它有对Document,Field的删除等操作。

以下一部分的内容是:全文的搜索

全文的搜索主要是用:IndexSearcher,Query,Hits,Document(都是Query的子类),有的时候用QueryParser

主要步骤:

1 . new  QueryParser(Field字段, new  分析器)

2 .Query query  =  QueryParser.parser(“要查询的字串”);这个地方我们能够用反射api看一下query到底是什么类型

3 . new  IndexSearcher(索引目录).search(query);返回Hits

4 .用Hits.doc(n);能够遍历出Document

5 .用Document可得到Field的详细信息了。 

事实上1 ,2两步就是为了弄出个Query实例,到底是什么类型的看分析器了。


拿曾经的样例来说吧

QueryParser queryParser  =   new  QueryParser( " name " , new  StandardAnalyzer());

        Query query  =  queryParser.parse( "程序猿 " );

/**/ /*这里返回的就是org.apache.lucene.search.PhraseQuery */ 

        IndexSearcher indexSearcher  = new  IndexSearcher( " c://indexDisk " );

        Hits hits  =  indexSearcher.search(query);

无论是什么类型,无非返回的就是Query的子类,我们全然能够不用这两步直接new个Query的子类的实例就ok了,只是一般还是用这两步由于它返回的是PhraseQuery这个是非常强大的query子类它能够进行多字搜索用QueryParser能够设置各个keyword之间的关系这个是最经常使用的了。

IndexSearcher:

事实上IndexSearcher它内部自带了一个IndexReader用来读取索引的,IndexSearcher有个close()方法,这种方法不是用来关闭IndexSearche的是用来关闭自带的IndexReader。


QueryParser呢能够用parser.setOperator()来设置各个keyword之间的关系(与还是或)它能够自己主动通过空格从字串里面将keyword分离出来。

注意:用QueryParser搜索的时候分析器一定的和建立索引时候用的分析器是一样的。

Query:

能够看一个lucene2.0的帮助文档有非常多的子类:

BooleanQuery, ConstantScoreQuery, ConstantScoreRangeQuery, DisjunctionMaxQuery, FilteredQuery, MatchAllDocsQuery, MultiPhraseQuery, MultiTermQuery, PhraseQuery, PrefixQuery, RangeQuery, SpanQuery, TermQuery

各自实使用方法看一下文档就能知道它们的使用方法了

以下一部分讲一下lucene的分析器:

分析器是由分词器和过滤器组成的,拿英文来说吧分词器就是通过空格把单词分开,过滤器就是把the,to,of等词去掉不被搜索和索引。

我们最经常使用的是StandardAnalyzer()它是lucene的标准分析器它集成了内部的很多的分析器。

最后一部分了:lucene的高级搜索了

1.排序

Lucene有内置的排序用IndexSearcher.search(query,sort)可是功能并不理想。我们须要自己实现自定义的排序。

这种话得实现两个接口: ScoreDocComparator, SortComparatorSource

用IndexSearcher.search(query,new Sort(new SortField(String Field,SortComparatorSource)));

就看个样例吧:

这是一个建立索引的样例:

public   void  IndexSort()  throws  IOException

{

        IndexWriter writer  =   new  IndexWriter( " C://indexStore " , new  StandardAnalyzer(), true );

        Document doc  =   new  Document()

        doc.add( new  Field( " sort " , " 1 " ,Field.Store.YES,Field.Index.TOKENIZED));

        writer.addDocument(doc);

        doc  =   new  Document();

        doc.add( new  Field( " sort " , " 4 " ,Field.Store.YES,Field.Index.TOKENIZED));

        writer.addDocument(doc);

        doc  =   new  Document();

        doc.add( new  Field( " sort " , " 3 " ,Field.Store.YES,Field.Index.TOKENIZED));

        writer.addDocument(doc);

        doc  =   new  Document();

        doc.add( new  Field( " sort " , " 5 " ,Field.Store.YES,Field.Index.TOKENIZED));

        writer.addDocument(doc);

        doc  =   new  Document();

        doc.add( new  Field( " sort " , " 9 " ,Field.Store.YES,Field.Index.TOKENIZED));

        writer.addDocument(doc);

        doc  =   new  Document();

        doc.add( new  Field( " sort " , " 6 " ,Field.Store.YES,Field.Index.TOKENIZED));

        writer.addDocument(doc);

        doc  =   new  Document();

        doc.add( new  Field( " sort " , " 7 " ,Field.Store.YES,Field.Index.TOKENIZED));

        writer.addDocument(doc);

        writer.close();

以下是搜索的样例:

[code]

public void SearchSort1() throws IOException, ParseException

{

        IndexSearcher indexSearcher = new IndexSearcher("C://indexStore");

        QueryParser queryParser = new QueryParser("sort",new StandardAnalyzer());

        Query query = queryParser.parse("4");

       

        Hits hits = indexSearcher.search(query);

        System.out.println("有"+hits.length()+"个结果");

        Document doc = hits.doc(0);

        System.out.println(doc.get("sort"));

}

public void SearchSort2() throws IOException, ParseException

{

        IndexSearcher indexSearcher = new IndexSearcher("C://indexStore");

        Query query = new RangeQuery(new Term("sort","1"),new Term("sort","9"),true);//这个地方前面没有提到,它是用于范围的Query能够看一下帮助文档.

        Hits hits = indexSearcher.search(query,new Sort(new SortField("sort",new MySortComparatorSource())));

        System.out.println("有"+hits.length()+"个结果");

        for(int i=0;i

        {

            Document doc = hits.doc(i);

            System.out.println(doc.get("sort"));

        }

}

public class MyScoreDocComparator implements ScoreDocComparator

{

    private Integer[]sort;

    public MyScoreDocComparator(String s,IndexReader reader, String fieldname) throws IOException

    {

        sort = new Integer[reader.maxDoc()];

        for(int i = 0;i

        {

            Document doc =reader.document(i);

            sort[i]=new Integer(doc.get("sort"));

        }

    }

    public int compare(ScoreDoc i, ScoreDoc j)

    {

        if(sort[i.doc]>sort[j.doc])

            return 1;

        if(sort[i.doc]

            return -1;

        return 0;

    }

    public int sortType()

    {

        return SortField.INT;

    }

    public Comparable sortValue(ScoreDoc i)

    {

        // TODO自己主动生成方法存根

        return new Integer(sort[i.doc]);

    }

}

public class MySortComparatorSource implements SortComparatorSource

{

    private static final long serialVersionUID = -9189690812107968361L;

    public ScoreDocComparator newComparator(IndexReader reader, String fieldname)

            throws IOException

    {

        if(fieldname.equals("sort"))

            return new MyScoreDocComparator("sort",reader,fieldname);

        return null;

    }

}[/code]

SearchSort1()输出的结果没有排序,SearchSort2()就排序了。

2.多域搜索MultiFieldQueryParser

假设想输入keyword而不想关心是在哪个Field里的就能够用MultiFieldQueryParser了

用它的构造函数就可以后面的和一个Field一样。

MultiFieldQueryParser. parse(String[] queries, String[] fields, BooleanClause.Occur[] flags, Analyzer analyzer)                                          ~~~~~~~~~~~~~~~~~

第三个參数比較特殊这里也是与曾经lucene1.4.3不一样的地方

看一个样例就知道了

String[] fields = {"filename", "contents", "description"};

 BooleanClause.Occur[] flags = {BooleanClause.Occur.SHOULD,

                BooleanClause.Occur.MUST,//在这个Field里必须出现的

                BooleanClause.Occur.MUST_NOT};//在这个Field里不能出现

 MultiFieldQueryParser.parse("query", fields, flags, analyzer);


1、lucene的索引不能太大,要不然效率会非常低。大于1G的时候就必须考虑分布索引的问题

2、不建议用多线程来建索引,产生的互锁问题非常麻烦。经常发现索引被lock,无法又一次建立的情况

3、中文分词是个大问题,眼下免费的分词效果都非常差。假设有能力还是自己实现一个分词模块,用最短路径的切分方法,网上有教材和demo源代码,能够參考。

4、建增量索引的时候非常耗cpu,在訪问量大的时候会导致cpu的idle为0

5、默认的评分机制不太合理,须要依据自己的业务定制

 

总体来说lucene要用好不easy,必须在上述方面扩充他的功能,才干作为一个商用的搜索引擎

\

​编程点滴.LUCENE的FILED选项​

争取每日记录一些

Index选项

Index.ANALYZED – 索引并分词(适用于body, title, abstract等.).

Index.NOT_ANALYZED – 索引但不分词,能够使用NORM方式.(能够人为干预提权)

Index.ANALYZED_NO_NORMS – 索引并分词但不使用NORM方式(不可觉得提权)

Index.NOT_ANALYZED_NO_NORMS – 索引但不分词也不使用NORM方式(经经常使用到,存储标志值最好的方式.)

Index.NO – 不索引

 

Store选项

Store.YES – 存储

Store.NO  – 不存储

 

TermVector选项

(除TermVector.NO外其它必须要求Index选项为Index.ANALYZED或Index.NOT_ANALYZED)

TermVector.YES – 最主要的向量存储(特殊性,数量,在哪个文档)

TermVector.WITH_POSITIONS – TermVector.YES+位置

TermVector.WITH_OFFSETS – TermVector.YES+偏移

TermVector.WITH_POSITIONS_OFFSETS – TermVector.YES+位置+偏移

TermVector.NO – 不做向量存储

 

各选项组合应用场景

Index

Store

TermVector

事例


NOT_ANALYZ

Technorati 标签: ​​LUCENE FIELD INDEX ANALYZED NOT_ANALYZED TermVector​

ED_NO_NORMS


YES

NO

主键,电话,身份证号,URLs,日期和须要排序的字段

ANALYZED

YES

WITH_POSITIONS_OFFSETS

文档标题,摘要.

ANALYZED

NO

WITH_POSITIONS_OFFSETS

文档主体

NO

YES

NO

文档类型,数据库主键(假设不须要检索该字段的话)

NOT_ANALYZED

NO

NO

隐藏字段

 

排序的注意事项

假设须要排序的字段是数字就用NumericField,假设是文本,一定要记得使用FIELD.Index.NOT_ANALYZED.

假设不须要提权则应该使用NOT_ANALYZED_NO_NORMS

 

多值字段的保存

在同一个Document下能够给同一个字段赋不同的值.比如

Document doc = new Document();

for (int i = 0; i < authors.length; i++) {

      doc.add(new Field("author", authors[i],

                                    Field.Store.YES,

                                    Field.Index.ANALYZED));

}

LUCENE.NET QQ交流群(81361051) 

Lucene  API

l  被索引的文档用Document对象表示。

l  IndexWriter通过函数addDocument将文档加入到索引中,实现                  创建索引的过程。

l  Lucene的索引是应用反向索引。

l  当用户有请求时,Query代表用户的查询语句。

l  IndexSearcher通过函数search搜索Lucene Index。

l  IndexSearcher计算term weight和score而且将结果返回给用户。

l  返回给用户的文档集合用TopDocsCollector表示。

Lucene搜索的api的类主要有4个 IndexSearcher ,Query(包括子类),QueryParser,Hits

一:IndexSearcher是搜索的入口,他的search方法提供了搜索功能

Query有非常多子类, 各种不同的子类代表了不同的查询条件,下文详述

QueryParser是一个非常通用的帮助类,他的作用是把用户输入的文本转换为内置的Query对象(大多数web搜索引擎都提供一个查询输入框来让用户输入查询条件)。QueryParser内置提供了非常多语法来使使用能够输入各种高级条件的Query。比方: "Hello AND world"会被解析为一个AND关系的BooleanQuery,他包括两个TermQuery(Hell和world)。这些语法尽管强大,但都针对英文设计,对我们须要中文搜索来说都不须要了解太多的Query类型,一般几个简单的就够用了。QueryParser的使用例如以下

QueryParser.parse(String query, String field, Analyzer analyzer) throws ParseException

当中:query是用户输入的内容,field是搜索默认的field(其它field须要显式指定),analyzer是用来将用户输入的内容也作分析处理(分词),普通情况下这里的anaylyzer是index的时候採用的同一analyzer。

另外我们也能够自己构造一个QueryParser: new QueryParser(String field, Analyzer a)(含义同上),这样做的优点是能够自定义调整一些參数.

搜索结果的处理:Hits对象

Hits对象是搜索结果的集合 主要有以下几个方法

length() ,这种方法记录有多少条结果返回(lazy loading)

doc(n) 返回第n个记录

id(in) 返回第n个记录的Document ID

score(n) 第n个记录的相关度(积分)

由于搜索的结果一般比較大,从性能上考虑,Hits对象并不会真正把全部的结果全部取回,默认情况下是保留前100个记录(对于一般的搜索引擎,100个记录足够了).

分页的处理

100条记录还是太多,我们多半会每页显示20条记录,然后分为若干页显示,对于分页,一般有两个办法

在session中保留indexreader对象和hit对象,翻页的时候提取内容

不使用session,每次都简单处理为又一次查询

lucene推荐先使用第二个办法,即每次都又一次查询,这样做的优点是简单方便,不须要考虑session的问题,lucene的查询效率也能保证每次查询时间不长,除非真正有了性能问题,否则不用考虑第一个办法。

缓存:RAMDirectory的使用方法

RAMDirectory对象非常好用,通过它,我们能够把一个普通的index全然读取到内存中,使用方法例如以下:

RAMDirectory ramDir = new RAMDirectory(dir);

这种ramdir效率自然比真正的文件系统快非常多

Lucene的scoring算法

lucence查询的纪录默认依照相关度排序,这个相关度就是score,scoring的算法是比較复杂的,对于我们做应用的人似乎没有什么帮助,(先说一下Term: 我的理解是Term为一个独立的查询词,用户输入的的查询通过各种分词,大写和小写处理(正规化),消除stopwords等)以后,会已Term为基本单位),几个关键參数略微留意一下就可以。

Term在文章中出现的频率量,包括同一个Term的文章的频率

field中的boosting參数

term的长度

term在文章中的数量

一般来说,这些參数我们都不可能去调整, 假设你想了解很多其它,IndexSearcher还提供了一个explain方法, 通过传入一个Query和document ID,你能够得到一个Explaination对象,他是对内部算法信息的简单封装,toString()一下就能够看到详细的说明

二:创建Query:各种query介绍

最普通的TermQuery

TermQuery最普通, 用Term t=new Term("contents","cap"); new TermQuery(t)就能够构造

TermQuery把查询条件视为一个key, 要求和查询内容全然匹配,比方Field.Keyword类型就能够使用TermQuery

RangeQuery

RangeQuery表示一个范围的搜索条件,RangeQuery query = new RangeQuery(begin, end, included);

最后一个boolean值表示是否包括边界条件本身, 用字符表示为"[begin TO end]" 或者"{begin TO end}"

PrefixQuery

顾名思义,就是表示以某某开头的查询, 字符表示为"something*"

BooleanQuery

这个是一个组合的Query,你能够把各种Query加入进去并标明他们的逻辑关系,加入条件用

public void add(Query query, boolean required, boolean prohibited)

方法, 后两个boolean变量是标示AND or NOT三种关系 字符表示为" AND or NOT" 或 "+ -" ,一个BooleanQuery中能够加入多个Query, 假设超过setMaxClauseCount(int)的值(默认1024个)的话,会抛出TooManyClauses错误.

PhraseQuery

表示不严格语句的查询,比方"red pig"要匹配"red fat pig","red fat big pig"等,PhraseQuery所以提供了一个setSlop()參数,在查询中,lucene会尝试调整单词的距离和位置,这个參数表示能够接受调整次数限制,假设实际的内容能够在这么多步内调整为全然匹配,那么就被视为匹配.在默认情况下slop的值是0, 所以默认是不支持非严格匹配的, 通过设置slop參数(比方"red pig"匹配"red fat pig"就须要1个slop来把pig后移动1位),我们能够让lucene来模糊查询. 值得注意的是,PhraseQuery不保证前后单词的次序,在上面的样例中,"pig red"须要2个slop,也就是假设slop假设大于等于2,那么"pig red"也会被觉得是匹配的.

WildcardQuery

使用?和*来表示一个或多个字母比方wil*能够匹配 wild ,wila ,wilxaaaa...,值得注意的是,在wildcard中,仅仅要是匹配上的纪录,他们的相关度都是一样的,比方wilxaaaa和wild的对于wil*的相关度就是一样的.

FuzzyQuery

这个Query对中文没有什么用处,他能模糊匹配英文单词(前面的都是词组),比方fuzzy和wuzzy他们能够看成相似, 对于英文的各种时态变化和复数形式,这个FuzzyQuery还算实用,匹配结果的相关度是不一样的.字符表示为 "fuzzy~"

三:QueryParser使用

对于搜索引擎, 非常多情况下用户仅仅须要一个输入框就要输入全部的查询条件(比方google), 这时,QueryParser就派上用场了,他的作用就是把各种用户输入转为Query或者Query组, 他把上面提到的Query的字符表示(Query.toString)转化为实际的Query对象,比方"wuzzy~"就会转换为FuzzyQuery, 只是QueryParser用到了Analyzer,所以QueryParser parse过后的Query再toString未必和原来的一样.Query额外的语法有:

分组:Groupping

比方"(a AND b) or C",就是括号分组,非常easy理解

FieldSelectiong

QueryParser的查询条件是对默认的Field进行的, 它在QueryParser解析的时候编码指定, 假设用户须要在查询条件中选用另外的Field, 能够使用例如以下语法: fieldname:fielda, 假设是多个分组,能够用fieldname:(fielda fieldb fieldc)表示.

*号问题

QueryParse默认不同意*号出如今開始部分,这样做的目的主要是为了防止用户误输入*来头导致严重的性能问题(会把全部记录读出)

boosting

通过hello^2.0 能够对hello这个term进行boosting,(我想不到什么用户会这样么bt)

QueryParser是一个准备好的,马上能够工作的帮助类,只是他还是提供了非常多參数供程序猿调整,首先,我们须要自己构造一个新的QueryParser,然后对他的各种參数来定制化

Lucene分析

1.创建索引的步骤:

1)把要转换为索引的磁盘上的文件转换为Luncene文档:

Document doc = File2DocumentUtils.file2Document(filePath);

转换代码

public static Document file2Document(String filePath) {

// TODO Auto-generated method stub

File file = new File(filePath);

Document doc = new Document();

doc.add(new Field("name", file.getName(), Store.YES, Index.ANALYZED));

doc.add(new Field("content", readFileContent(file), Store.YES,

Index.ANALYZED));

doc.add(new Field("size", String.valueOf(file.length()), Store.YES,

Index.ANALYZED));

doc.add(new Field("path", file.getAbsolutePath(), Store.YES,

Index.ANALYZED));

return doc;

}

读取文件内容代码

public static String readFileContent(File file) {

// TODO Auto-generated method stub

try {

BufferedReader br = new BufferedReader(new InputStreamReader(

new FileInputStream(file)));

StringBuffer buffer = new StringBuffer();

for (String line; (line = br.readLine()) != null;) {

buffer.append(line).append("\n");

}

return buffer.toString();

} catch (FileNotFoundException e) {

// TODO Auto-generated catch block

e.printStackTrace();

} catch (IOException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

return null ;

   

}

2)创建IndexWriter

IndexWriter indexWriter = new IndexWriter(indexPath, analyzer, true,

new MaxFieldLength(10000));

IndexWriter是用来操作(增、删、改)索引库的

3)把document文档加到IndexWriter

indexWriter.addDocument(doc);

4)关闭IndexWriter

Indexwriter。Close();

2.在索引库的搜素步骤

1)把要搜索的索引解析为query

String querystring="document";

String []fields={"name","content"};

QueryParser parser=new MultiFieldQueryParser(fields,analyzer);

//QueryParser是一个解析用户输入的工具,能够扫描用户输入的字符串,生成query对象。

Query query=parser.parse(querystring);

2)进行查询

IndexSearcher indexSearcher=new IndexSearcher(indexPath);

Filter filter=null;

TopDocs  topDocs=indexSearcher.search(query,(org.apache.lucene.search.Filter) filter,10000);

      System.out.println("总共同拥有【"+topDocs.totalHits+"】条匹配结果");

注:TopDocs 依据keyword搜索整个索引库,然后对全部结果进行排序,然后取前10000条结果

3)输出搜索结果

for(ScoreDoc scoreDoc:topDocs.scoreDocs){

     int docSn=scoreDoc.doc;//文档内部编号

     Document doc=indexSearcher.doc(docSn);//依据编号取出对应的文档

     File2DocumentUtils.printDocumentInfo(doc);//打印出文档信息

}

/**

获取name属性的值的两种方法

 1.Filed f=doc.getFiled("name");

    f.stringValue();

 2.doc.get("name")

*/

     public static void printDocumentInfo(Document doc){

      //Filed f=doc.getFiled("name");

     // f.stringValue();

      System.out.println("-------------------------------------------");

      System.out.println("name    ="+doc.get("name"));

      System.out.println("content ="+doc.get("content"));

      System.out.println("size     ="+doc.get("size"));

      System.out.println("path     ="+doc.get("path"));

     }