题目链接:​​http://acm.hdu.edu.cn/showproblem.php?pid=6343​

Time Limit: 2000/1000 MS (Java/Others)  Memory Limit: 262144/262144 K (Java/Others)

Problem Description

There is a complete graph containing n vertices, the weight of the i-th vertex is wi.

The length of edge between vertex i and j (i≠j) is ⌊sqrt(|wi−wj|)⌋.

Calculate the length of the shortest path from 1 to n.


Input

The first line of the input contains an integer T (1≤T≤10) denoting the number of test cases.

Each test case starts with an integer n (1≤n≤10^5) denoting the number of vertices in the graph.

The second line contains n integers, the i-th integer denotes wi (1≤wi≤10^5).


Output

For each test case, print an integer denoting the length of the shortest path from 1 to n.


Sample Input

1

3

1 3 5


Sample Output

2

 


 


题意:

给出一张完全图由n个点组成,编号1~n,每个点有一个权重 ${w_i }$,对于任意不同两点 i 和 j 之间的边的长度为 $\left\lfloor {\sqrt {\left| {w_i - w_j } \right|} } \right\rfloor$,

要求给出从1到n的最短路长度。

 

题解:

先说结论:对于任意两点 i 和 j,${\mathop{\rm edge}\nolimits} \left( {i,j} \right)$ 这条边是最短路;

 

我们首先来证明:

$\left\lfloor {\sqrt a } \right\rfloor + \left\lfloor {\sqrt b } \right\rfloor \ge \left\lfloor {\sqrt {a + b} } \right\rfloor$

其中 $a,b$ 均为正整数。

 

证明:

设有两个正整数 $m,n$ 满足 $a \in \left[ {m^2 ,\left( {m + 1} \right)^2 - 1} \right],b \in \left[ {n^2 ,\left( {n + 1} \right)^2 - 1} \right]$,则 $\left\lfloor {\sqrt a } \right\rfloor = m,\left\lfloor {\sqrt b } \right\rfloor = n$,

那么自然就有

$a + b \in \left[ {m^2 + n^2 ,m^2 + n^2 + 2m + 2n} \right]$

$\sqrt {a + b} \in \left[ {\sqrt {m^2 + n^2 } ,\sqrt {m^2 + n^2 + 2m + 2n} } \right]$

 

此时,我们考察两个完全平方数 $\left( {m + n} \right)^2 ,\left( {m + n + 1} \right)^2$,将他们展开:$m^2 + n^2 + 2mn\;\;,\;\;m^2 + n^2 + 2mn + 2m + 2n + 1$,

显然 $\left( {m + n + 1} \right)^2 = \;m^2 + n^2 + 2mn + 2m + 2n + 1 > m^2 + n^2 + 2m + 2n$,也就是说平方数 $\left( {m + n + 1} \right)^2$ 大于 $a+b$ 所属区间的右端点,

再分类讨论 $\left( {m + n} \right)^2$ 与 $a+b$ 所属区间的右端点的关系:

①若 $mn \ge m + n$,则

$\left( {m + n} \right)^2 = m^2 + n^2 + 2mn \ge m^2 + n^2 + 2m + 2n$

$m + n \ge \sqrt {m^2 + n^2 + 2m + 2n}$

 即

$\left\lfloor {\sqrt a } \right\rfloor + \left\lfloor {\sqrt b } \right\rfloor \ge \sqrt {m^2 + n^2 + 2m + 2n} \ge \sqrt {a + b} \ge \left\lfloor {\sqrt {a + b} } \right\rfloor$

②若 $mn < m + n$,则

$m^2 + n^2 + 2mn < m^2 + n^2 + 2m + 2n$

 也就是说,$a + b$ 所属区间 $\left[ {m^2 + n^2 ,m^2 + n^2 + 2m + 2n} \right]$ 的右端点在两个完全平方数 $\left( {m + n} \right)^2 ,\left( {m + n + 1} \right)^2$ 之间,

 那么根据开根号再向下取整的性质,显然有

$\left\lfloor {\sqrt {a + b} } \right\rfloor \le \sqrt {\left( {m + n} \right)^2 } = m + n = \left\lfloor {\sqrt a } \right\rfloor + \left\lfloor {\sqrt b } \right\rfloor$

 

综上所述,就证明了 $\left\lfloor {\sqrt a } \right\rfloor + \left\lfloor {\sqrt b } \right\rfloor \ge \left\lfloor {\sqrt {a + b} } \right\rfloor$,

而且不难发现,将 $a,b$ 范围扩大成均为非负整数也不会影响上述不等式成立。

 

接下来,对于完全图上的任意两点 i 和 j,若任取其他一个点 k,我们来证明 $\left\lfloor {\sqrt {\left| {w_i - w_k } \right|} } \right\rfloor + \left\lfloor {\sqrt {\left| {w_k - w_j } \right|} } \right\rfloor \ge \left\lfloor {\sqrt {\left| {w_i - w_j } \right|} } \right\rfloor$,

换句话说,我们要证明 ${\mathop{\rm edge}\nolimits} \left( {i,k} \right) + {\mathop{\rm edge}\nolimits} \left( {k,j} \right) \ge {\mathop{\rm edge}\nolimits} \left( {i,j} \right)$,此处 ${\mathop{\rm edge}\nolimits} \left( {i,j} \right)$ 代表连接 i 和 j 两点的边的长度。

 

证明:

首先,根据绝对值不等式可以知道

$\left| {w_i - w_k } \right| + \left| {w_k - w_j } \right| \ge \left| {w_i - w_k + w_k - w_j } \right| = \left| {w_i - w_j } \right|$

其次,易知若两非负整数满足 $m \ge n$,则 $\left\lfloor {\sqrt m } \right\rfloor \ge \left\lfloor {\sqrt n } \right\rfloor$,

那么自然就有

$\left\lfloor {\sqrt {\left| {w_i - w_k } \right| + \left| {w_k - w_j } \right|} } \right\rfloor \ge \left\lfloor {\sqrt {\left| {w_i - w_j } \right|} } \right\rfloor$

再者,根据上文证明的公式 $\left\lfloor {\sqrt a } \right\rfloor + \left\lfloor {\sqrt b } \right\rfloor \ge \left\lfloor {\sqrt {a + b} } \right\rfloor$,有

$\left\lfloor {\sqrt {\left| {w_i - w_k } \right|} } \right\rfloor + \left\lfloor {\sqrt {\left| {w_k - w_j } \right|} } \right\rfloor \ge \left\lfloor {\sqrt {\left| {w_i - w_k } \right| + \left| {w_k - w_j } \right|} } \right\rfloor$

最后,上面两个不等式连起来即

$\left\lfloor {\sqrt {\left| {w_i - w_k } \right|} } \right\rfloor + \left\lfloor {\sqrt {\left| {w_k - w_j } \right|} } \right\rfloor \ge \left\lfloor {\sqrt {\left| {w_i - w_j } \right|} } \right\rfloor$

证毕。

 

那么,我们就知道了图上任意两点 i 和 j,不会有第三个点 k 存在,使得 ${\mathop{\rm edge}\nolimits} \left( {i,k} \right) + {\mathop{\rm edge}\nolimits} \left( {k,j} \right)$ 比 ${\mathop{\rm edge}\nolimits} \left( {i,j} \right)$ 更小,

那么同样不会存在其他两个点 k 和 p,使得 ${\mathop{\rm edge}\nolimits} \left( {i,k} \right) + {\mathop{\rm edge}\nolimits} \left( {k,p} \right) + {\mathop{\rm edge}\nolimits} \left( {p,j} \right)$ 比 ${\mathop{\rm edge}\nolimits} \left( {i,j} \right)$ 更小,

原因很简单,因为 ${\mathop{\rm edge}\nolimits} \left( {k,p} \right) + {\mathop{\rm edge}\nolimits} \left( {p,j} \right) \ge {\mathop{\rm edge}\nolimits} \left( {k,j} \right)$ 且 ${\mathop{\rm edge}\nolimits} \left( {i,k} \right) + {\mathop{\rm edge}\nolimits} \left( {k,j} \right) \ge {\mathop{\rm edge}\nolimits} \left( {i,j} \right)$,

所以,对于任意两点 i 和 j,不管另取多少个点,都不会让从 i 到 j 的路径比 ${\mathop{\rm edge}\nolimits} \left( {i,j} \right)$ 更短,因而 ${\mathop{\rm edge}\nolimits} \left( {i,j} \right)$ 这条边就是最短路。

 

AC代码:



#include<bits/stdc++.h>
using namespace std;
int main()
{
int T,n;
cin>>T;
while(T--)
{
scanf("%d",&n);
int w,a,b;
for(int i=1;i<=n;i++)
{
scanf("%d",&w);
if(i==1) a=w;
if(i==n) b=w;
}
printf("%d\n",(int)floor(sqrt(abs(a-b))));
}
}