一、前言
学Java怎么能,突飞猛进的成长?
是不是你看见过的突飞猛进都是别人,但自己却很难!
其实并没有一天的突飞猛进,也没有一口吃出来的胖子。有得更多的时候日积月累、不断沉淀,最后才能爆发、破局!
举个简单的例子,如果你大学毕业时候已经写了40万行代码,还找不到工作吗?但40万行平均到每天并不会很多,重要的是持之以恒的坚持。
二、面试题
谢飞机,小记! 东风吹、战鼓擂,不加班、谁怕谁!哈哈哈,找我大哥去。
谢飞机:喂,大哥。我女友面试卡住了,强人锁难,锁我也不会!
面试官:你不应该不会呀,问你一个,基于 AQS 实现的锁都有哪些?
谢飞机:嗯,有 ReentrantLock…
面试官:还有呢?
谢飞机:好像想不起来了,sync也不是!
面试官:哎,学点漏点,不思考、不总结、不记录。你这样人家面试你就没法聊了,最起码你要有点深度。
谢飞机:嘿嘿,记住了。来我家吃火锅吧,细聊。
三、共享锁 和 AQS
1. 基于 AQS 实现的锁有哪些?
AQS(AbstractQueuedSynchronizer),是 Java 并发包中非常重要的一个类,大部分锁的实现也是基于 AQS 实现的,包括:
- ReentrantLock,可重入锁。这个是我们最开始介绍的锁,也是最常用的锁。通常会与 synchronized 做比较使用。
- ReentrantReadWriteLock,读写锁。读锁是共享锁、写锁是独占锁。
- Semaphore,信号量锁。主要用于控制流量,比如:数据库连接池给你分配10个链接,那么让你来一个连一个,连到10个还没有人释放,那你就等等。
- CountDownLatch,闭锁。Latch 门闩的意思,比如:说四个人一个漂流艇,坐满了就推下水。
这一章节我们主要来介绍 Semaphore ,信号量锁的实现,其实也就是介绍一个关于共享锁的使用和源码分析。
2. Semaphore 共享锁使用
Semaphore semaphore = new Semaphore(2, false); // 构造函数入参,permits:信号量、fair:公平锁/非公平锁 for (int i = 0; i < 8; i++) { new Thread(() -> { try { semaphore.acquire(); System.out.println(Thread.currentThread().getName() + "蹲坑"); Thread.sleep(1000L); } catch (InterruptedException ignore) { } finally { semaphore.release(); } }, "蹲坑编号:" + i).start(); }
这里我们模拟了一个在高速服务区,厕所排队蹲坑的场景。由于坑位有限,为了避免造成拥挤和踩踏,保安人员在门口拦着,感觉差不多,一次释放两个进去,一直到都释放。你也可以想成早上坐地铁上班,或者旺季去公园,都是一批一批的放行
测试结果
蹲坑编号:0蹲坑 蹲坑编号:1蹲坑 蹲坑编号:2蹲坑 蹲坑编号:3蹲坑 蹲坑编号:4蹲坑 蹲坑编号:5蹲坑 蹲坑编号:6蹲坑 蹲坑编号:7蹲坑 Process finished with exit code 0
- Semaphore 的构造函数可以传递是公平锁还是非公平锁,最终的测试结果也不同,可以自行尝试。
- 测试运行时,会先输出0坑、1坑,之后2坑、3坑…,每次都是这样两个,两个的释放。这就是 Semaphore 信号量锁的作用。
3. Semaphore 源码分析
3.1 构造函数
public Semaphore(int permits) { sync = new NonfairSync(permits); } public Semaphore(int permits, boolean fair) { sync = fair ? new FairSync(permits) : new NonfairSync(permits); }
permits:n. 许可证,特许证(尤指限期的)
默认情况下只需要传入 permits 许可证数量即可,也就是一次允许放行几个线程。构造函数会创建非公平锁。如果你需要使用 Semaphore 共享锁中的公平锁,那么可以传入第二个构造函数的参数 fair = false/true。true:FairSync,公平锁。在我们前面的章节已经介绍了公平锁相关内容和实现,以及CLH、MCS 《公平锁介绍》
初始许可证数量
FairSync/NonfairSync(int permits) { super(permits); } Sync(int permits) { setState(permits); } protected final void setState(int newState) { state = newState; }
在构造函数初始化的时候,无论是公平锁还是非公平锁,都会设置 AQS 中 state 数量值。这个值也就是为了下文中可以获取的信号量扣减和增加的值。
3.2 acquire 获取信号量
方法 | 描述 |
---|---|
semaphore.acquire() | 一次获取一个信号量,响应中断 |
semaphore.acquire(2) | 一次获取n个信号量,响应中断(一次占2个坑) |
semaphore.acquireUninterruptibly() | 一次获取一个信号量,不响应中断 |
semaphore.acquireUninterruptibly(2) | 一次获取n个信号量,不响应中断 |
- 其实获取信号量的这四个方法,主要就是,一次获取几个和是否响应中断的组合。
- semaphore.acquire(),源码中实际调用的方法是,sync.acquireSharedInterruptibly(1)。也就是相应中断,一次只占一个坑。
- semaphore.acquire(2),同理这个就是一次要占两个名额,也就是许可证。生活中的场景就是我给我朋友排的对,她来了,进来吧。
3.3 acquire 释放信号量
方法 | 描述 |
---|---|
semaphore.release() | 一次释放一个信号量 |
semaphore.release(2) | 一次获取n个信号量 |
有获取就得有释放,获取了几个信号量就要释放几个信号量。当然你可以尝试一下,获取信号量 semaphore.acquire(2) 两个,释放信号量 semaphore.release(1),看看运行效果
3.4 公平锁实现
信号量获取过程,一直到公平锁实现。semaphore.acquire -> sync.acquireSharedInterruptibly(permits) -> tryAcquireShared(arg)
semaphore.acquire(1); public void acquire(int permits) throws InterruptedException { if (permits < 0) throw new IllegalArgumentException(); sync.acquireSharedInterruptibly(permits); } public final void acquireSharedInterruptibly(int arg) throws InterruptedException { if (Thread.interrupted()) throw new InterruptedException(); if (tryAcquireShared(arg) < 0) doAcquireSharedInterruptibly(arg); }
FairSync.tryAcquireShared
protected int tryAcquireShared(int acquires) { for (;;) { if (hasQueuedPredecessors()) return -1; int available = getState(); int remaining = available - acquires; if (remaining < 0 || compareAndSetState(available, remaining)) return remaining; } }
- hasQueuedPredecessors,公平锁的主要实现逻辑都在于这个方法的使用。它的目的就是判断有线程排在自己前面没,以及把线程添加到队列中的逻辑实现。在前面我们介绍过CLH等实现,可以往前一章节阅读
- for (;;),是一个自旋的过程,通过 CAS 来设置 state 偏移量对应值。这样就可以避免多线程下竞争获取信号量冲突。
- getState(),在构造函数中已经初始化 state 值,在这里获取信号量时就是使用 CAS 不断的扣减。
- 另外需要注意,共享锁和独占锁在这里是有区别的,独占锁直接返回true/false,共享锁返回的是int值。
- 如果该值小于0,则当前线程获取共享锁失败。
- 如果该值大于0,则当前线程获取共享锁成功,并且接下来其他线程尝试获取共享锁的行为很可能成功。
- 如果该值等于0,则当前线程获取共享锁成功,但是接下来其他线程尝试获取共享锁的行为会失败。
3.5 非公平锁实现
NonfairSync.nonfairTryAcquireShared
protected int tryAcquireShared(int acquires) { return nonfairTryAcquireShared(acquires); } final int nonfairTryAcquireShared(int acquires) { for (;;) { int available = getState(); int remaining = available - acquires; if (remaining < 0 || compareAndSetState(available, remaining)) return remaining; } }
- 有了公平锁的实现,非公平锁的理解就比较简单了,只是拿去了 if (hasQueuedPredecessors()) 的判断操作。
- 其他的逻辑实现都和公平锁一致。
3.6 获取信号量失败,加入同步等待队列
在公平锁和非公平锁的实现中,我们已经看到正常获取信号量的逻辑。那么如果此时不能正常获取信号量呢?其实这部分线程就需要加入到同步队列。
doAcquireSharedInterruptibly
public final void acquireSharedInterruptibly(int arg) throws InterruptedException { if (Thread.interrupted()) throw new InterruptedException(); if (tryAcquireShared(arg) < 0) doAcquireSharedInterruptibly(arg); } private void doAcquireSharedInterruptibly(int arg) throws InterruptedException { final Node node = addWaiter(Node.SHARED); boolean failed = true; try { for (;;) { final Node p = node.predecessor(); if (p == head) { int r = tryAcquireShared(arg); if (r >= 0) { setHeadAndPropagate(node, r); p.next = null; // help GC failed = false; return; } } if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) throw new InterruptedException(); } } finally { if (failed) cancelAcquire(node); } }
- 首先 doAcquireSharedInterruptibly 方法来自 AQS 的内部方法,与我们在学习竞争锁时有部分知识点相同,但也有一些差异。比如:addWaiter(Node.SHARED),tryAcquireShared,我们主要介绍下这内容。
- Node.SHARED,其实没有特殊含义,它只是一个标记作用,用于判断是否共享。final boolean isShared() { return nextWaiter == SHARED; }
- tryAcquireShared,主要是来自 Semaphore 共享锁中公平锁和非公平锁的实现。用来获取同步状态。
- setHeadAndPropagate(node, r),如果r > 0,同步成功后则将当前线程结点设置为头结点,同时 helpGC,p.next = null,断链操作。
- shouldParkAfterFailedAcquire(p, node),调整同步队列中 node 结点的状态,并判断是否应该被挂起。这在我们之前关于锁的文章中已经介绍。
- parkAndCheckInterrupt(),判断是否需要被中断,如果中断直接抛出异常,当前结点请求也就结束。
- cancelAcquire(node),取消该节点的线程请求。
4. CountDownLatch 共享锁使用
CountDownLatch 也是共享锁的一种类型,之所以在这里体现下,是因为它和 Semaphore 共享锁,既相似有不同。
CountDownLatch 更多体现的组团一波的思想,同样是控制人数,但是需要够一窝。比如:我们说过的4个人一起上皮划艇、两个人一起上跷跷板、2个人一起蹲坑我没见过,这样的方式就是门闩 CountDownLatch 锁的思想。
public static void main(String[] args) throws InterruptedException { CountDownLatch latch = new CountDownLatch(10); ExecutorService exec = Executors.newFixedThreadPool(10); for (int i = 0; i < 10; i++) { exec.execute(() -> { try { int millis = new Random().nextInt(10000); System.out.println("等待游客上船,耗时:" + millis + "(millis)"); Thread.sleep(millis); } catch (Exception ignore) { } finally { latch.countDown(); // 完事一个扣减一个名额 } }); } // 等待游客 latch.await(); System.out.println("船长急躁了,开船!"); // 关闭线程池 exec.shutdown(); }
- 这一个公园游船的场景案例,等待10个乘客上传,他们比较墨迹。
- 上一个扣减一个 latch.countDown()
- 等待游客都上船 latch.await()
- 最后船长开船!!急躁了
测试结果
等待游客上船,耗时:6689(millis) 等待游客上船,耗时:2303(millis) 等待游客上船,耗时:8208(millis) 等待游客上船,耗时:435(millis) 等待游客上船,耗时:9489(millis) 等待游客上船,耗时:4937(millis) 等待游客上船,耗时:2771(millis) 等待游客上船,耗时:4823(millis) 等待游客上船,耗时:1989(millis) 等待游客上船,耗时:8506(millis) 船长急躁了,开船! Process finished with exit code 0
- 在你实际的测试中会发现,船长急躁了,开船!,会需要等待一段时间。
- 这里体现的就是门闩的思想,组队、一波带走。
- CountDownLatch 的实现与 Semaphore 基本相同、细节略有差异,就不再做源码分析了。
四、总结
- 在有了 AQS、CLH、MCS,等相关锁的知识了解后,在学习其他知识点也相对容易。基本以上和前几章节关于锁的介绍,也是面试中容易问到的点。可能由于目前分布式开发较多,单机的多线程性能压榨一般较少,但是对这部分知识的了解非常重要
- 得益于Lee老爷子的操刀,并发包锁的设计真的非常优秀。每一处的实现都可以说是精益求精,所以在学习的时候可以把小傅哥的文章当作抛砖,之后继续深挖设计精髓,不断深入。
- 共享锁的使用可能平时并不多,但如果你需要设计一款类似数据库线程池的设计,那么这样的信号量锁的思想就非常重要了。所以在学习的时候也需要有技术迁移的能,不断把这些知识复用到实际的业务开发中。