LinkedBlockingDeque是双向链表实现的双向并发阻塞队列。该阻塞队列同时支持FIFO和FILO两种操作方式,即可以从队列的头和尾同时操作(插入/删除);该阻塞队列是支持线程安全。
此外,LinkedBlockingDeque还是可选容量的(防止过度膨胀),即可以指定队列的容量。如果不指定,默认容量大小等于Integer.MAX_VALUE。
LinkedBlockingDeque的数据结构,如下图所示:
说明:
1. LinkedBlockingDeque继承于AbstractQueue,本质上是一个支持FIFO和FILO的双向的队列。
2. LinkedBlockingDeque实现了BlockingDeque接口,它支持多线程并发。当多线程竞争同一个资源时,某线程获取到该资源之后,其它线程需要阻塞等待。
3. LinkedBlockingDeque是通过双向链表实现的。
first是双向链表的表头。
last是双向链表的表尾。
count是LinkedBlockingDeque的实际大小,即双向链表中当前节点个数。
capacity是LinkedBlockingDeque的容量,它是在创建LinkedBlockingDeque时指定的。
lock是控制对LinkedBlockingDeque的互斥锁,当多个线程竞争同时访问LinkedBlockingDeque时,某线程获取到了互斥锁lock,其它线程则需要阻塞等待,直到该线程释放lock,其它线程才有机会获取lock从而获取cpu执行权。
notEmpty和notFull分别是“非空条件”和“未满条件”。通过它们能够更加细腻进行并发控制。
-- 若某线程(线程A)要取出数据时,队列正好为空,则该线程会执行notEmpty.await()进行等待;当其它某个线程(线程B)向队列中插入了数据之后,会调用notEmpty.signal()
唤醒“notEmpty上的等待线程”。此时,线程A会被唤醒从而得以继续运行。 此外,线程A在执行取操作前,会获取takeLock,在取操作执行完毕再释放takeLock。
-- 若某线程(线程H)要插入数据时,队列已满,则该线程会它执行notFull.await()进行等待;当其它某个线程(线程I)取出数据之后,会调用notFull.signal()唤醒“notFull
上的等待线程”。此时,线程H就会被唤醒从而得以继续运行。 此外,线程H在执行插入操作前,会获取putLock,在插入操作执行完毕才释放putLock。
LinkedBlockingDeque(int capacity)来进行说明
public LinkedBlockingDeque(int capacity) {
if (capacity <= 0) throw new IllegalArgumentException();
this.capacity = capacity;
}
说明:capacity是“链式阻塞队列”的容量。
LinkedBlockingDeque中相关的数据结果定义如下:
// “双向队列”的表头
transient Node<E> first;
// “双向队列”的表尾
transient Node<E> last;
// 节点数量
private transient int count;
// 容量
private final int capacity;
// 互斥锁 , 互斥锁对应的“非空条件notEmpty”, 互斥锁对应的“未满条件notFull”
final ReentrantLock lock = new ReentrantLock();
private final Condition notEmpty = lock.newCondition();
private final Condition notFull = lock.newCondition();
双向链表的节点Node的定义如下:
static final class Node<E> {
E item; // 数据
Node<E> prev; // 前一节点
Node<E> next; // 后一节点
Node(E x) { item = x; }
}
下面以offer(E e)为例,对LinkedBlockingDeque的添加方法进行说明。
public boolean offer(E e) {
return offerLast(e);
}
offer()实际上是调用offerLast()将元素添加到队列的末尾。
offerLast()的源码如下:
public boolean offerLast(E e) {
if (e == null) throw new NullPointerException();
// 新建节点
Node<E> node = new Node<E>(e);
final ReentrantLock lock = this.lock;
// 获取锁
lock.lock();
try {
// 将“新节点”添加到双向链表的末尾
return linkLast(node);
} finally {
// 释放锁
lock.unlock();
}
}
说明:offerLast()的作用,是新建节点并将该节点插入到双向链表的末尾。它在插入节点前,会获取锁;操作完毕,再释放锁。
linkLast()的源码如下:
private boolean linkLast(Node<E> node) {
// 如果“双向链表的节点数量” > “容量”,则返回false,表示插入失败。
if (count >= capacity)
return false;
// 将“node添加到链表末尾”,并设置node为新的尾节点
Node<E> l = last;
node.prev = l;
last = node;
if (first == null)
first = node;
else
l.next = node;
// 将“节点数量”+1
++count;
// 插入节点之后,唤醒notEmpty上的等待线程。
notEmpty.signal();
return true;
}
说明:linkLast()的作用,是将节点插入到双向队列的末尾;插入节点之后,唤醒notEmpty上的等待线程。
删除
下面以take()为例,对LinkedBlockingDeque的取出方法进行说明。
public E take() throws InterruptedException {
return takeFirst();
}
take()实际上是调用takeFirst()队列的第一个元素。
takeFirst()的源码如下:
public E takeFirst() throws InterruptedException {
final ReentrantLock lock = this.lock;
// 获取锁
lock.lock();
try {
E x;
// 若“队列为空”,则一直等待。否则,通过unlinkFirst()删除第一个节点。
while ( (x = unlinkFirst()) == null)
notEmpty.await();
return x;
} finally {
// 释放锁
lock.unlock();
}
}
说明:takeFirst()的作用,是删除双向链表的第一个节点,并返回节点对应的值。它在插入节点前,会获取锁;操作完毕,再释放锁。
unlinkFirst()的源码如下:
private E unlinkFirst() {
// assert lock.isHeldByCurrentThread();
Node<E> f = first;
if (f == null)
return null;
// 删除并更新“第一个节点”
Node<E> n = f.next;
E item = f.item;
f.item = null;
f.next = f; // help GC
first = n;
if (n == null)
last = null;
else
n.prev = null;
// 将“节点数量”-1
--count;
// 删除节点之后,唤醒notFull上的等待线程。
notFull.signal();
return item;
}
说明:unlinkFirst()的作用,是将双向队列的第一个节点删除;删除节点之后,唤醒notFull上的等待线程。
遍历
下面对LinkedBlockingDeque的遍历方法进行说明。
public Iterator<E> iterator() {
return new Itr();
}
iterator()实际上是返回一个Iter对象。
Itr类的定义如下:
private class Itr extends AbstractItr {
// “双向队列”的表头
Node<E> firstNode() { return first; }
// 获取“节点n的下一个节点”
Node<E> nextNode(Node<E> n) { return n.next; }
}
Itr继承于AbstractItr,而AbstractItr的定义如下:
private abstract class AbstractItr implements Iterator<E> {
// next是下一次调用next()会返回的节点。
Node<E> next;
// nextItem是next()返回节点对应的数据。
E nextItem;
// 上一次next()返回的节点。
private Node<E> lastRet;
// 返回第一个节点
abstract Node<E> firstNode();
// 返回下一个节点
abstract Node<E> nextNode(Node<E> n);
AbstractItr() {
final ReentrantLock lock = LinkedBlockingDeque.this.lock;
// 获取“LinkedBlockingDeque的互斥锁”
lock.lock();
try {
// 获取“双向队列”的表头
next = firstNode();
// 获取表头对应的数据
nextItem = (next == null) ? null : next.item;
} finally {
// 释放“LinkedBlockingDeque的互斥锁”
lock.unlock();
}
}
// 获取n的后继节点
private Node<E> succ(Node<E> n) {
// Chains of deleted nodes ending in null or self-links
// are possible if multiple interior nodes are removed.
for (;;) {
Node<E> s = nextNode(n);
if (s == null)
return null;
else if (s.item != null)
return s;
else if (s == n)
return firstNode();
else
n = s;
}
}
// 更新next和nextItem。
void advance() {
final ReentrantLock lock = LinkedBlockingDeque.this.lock;
lock.lock();
try {
// assert next != null;
next = succ(next);
nextItem = (next == null) ? null : next.item;
} finally {
lock.unlock();
}
}
// 返回“下一个节点是否为null”
public boolean hasNext() {
return next != null;
}
// 返回下一个节点
public E next() {
if (next == null)
throw new NoSuchElementException();
lastRet = next;
E x = nextItem;
advance();
return x;
}
// 删除下一个节点
public void remove() {
Node<E> n = lastRet;
if (n == null)
throw new IllegalStateException();
lastRet = null;
final ReentrantLock lock = LinkedBlockingDeque.this.lock;
lock.lock();
try {
if (n.item != null)
unlink(n);
} finally {
lock.unlock();
}
}
}