Spark中的OOM问题不外乎以下两种情况

  1. map执行中内存溢出
  2. shuffle后内存溢出

Spark 内存模型:

       Spark在一个Executor中的内存分为三块:

                                 一块是execution内存,

                                 一块是storage内存,

                                 一块是other内存。

         当spark程序中,存在过多的小任务的时候,可以通过 RDD.coalesce方法,收缩合并分区,减少分区的个数,减小任务调度成本,避免Shuffle导致,比RDD.repartition效率提高不少。

1. map过程产生大量对象导致内存溢出:

   这种溢出的原因是在单个map中产生了大量的对象导致的。

          例如:rdd.map(x=>for(i <- 1 to 10000) yield i.toString),这个操作在rdd中,每个对象都产生了10000个对象,这肯定很容易产生内存溢出的问题。针对这种问题,在不增加内存的情况下,可以通过减少每个Task的大小,以便达到每个Task即使产生大量的对象Executor的内存也能够装得下。具体做法可以在会产生大量对象的map操作之前调用repartition方法,分区成更小的块传入map。例如:rdd.repartition(10000).map(x=>for(i <- 1 to 10000) yield i.toString)。

2.coalesce调用导致内存溢出:

         这是我最近才遇到的一个问题,因为hdfs中不适合存小问题,所以Spark计算后如果产生的文件太小,我们会调用coalesce合并文件再存入hdfs中。但是这会导致一个问题,例如在coalesce之前有100个文件,这也意味着能够有100个Task,现在调用coalesce(10),最后只产生10个文件,因为coalesce并不是shuffle操作,这意味着coalesce并不是按照我原本想的那样先执行100个Task,再将Task的执行结果合并成10个,而是从头到位只有10个Task在执行,原本100个文件是分开执行的,现在每个Task同时一次读取10个文件,使用的内存是原来的10倍,这导致了OOM。解决这个问题的方法是令程序按照我们想的先执行100个Task再将结果合并成10个文件,这个问题同样可以通过repartition解决,调整repartition(10)

3.shuffle后内存溢出:

          shuffle内存溢出的情况可以说都是shuffle后,单个文件过大导致的。

           在Spark中,join,reduceByKey这一类型的过程,都会有shuffle的过程,在shuffle的使用,需要传入一个partitioner,大部分Spark中的shuffle操作,默认的partitioner都是HashPatitioner,默认值是父RDD中最大的分区数,这个参数通过spark.default.parallelism控制(在spark-sql中用spark.sql.shuffle.partitions) , spark.default.parallelism参数只对HashPartitioner有效,所以如果是别的Partitioner或者自己实现的Partitioner就不能使用spark.default.parallelism这个参数来控制shuffle的并发量了。如果是别的partitioner导致的shuffle内存溢出,就需要从partitioner的代码增加partitions的数量。