思路:一长段概率乘过去最后会趋于平稳,所以因为地雷只有10个,可以疯狂压缩其位置,这样就不需要矩阵乘优化了。另外初始化f[0] = 0, f[1] = 1,相当于从1开始走吧。双倍经验:洛谷1052.

1 for (int i = 1; i <= n; i++) {
2     if (pos[i] - pos[i - 1] > 50) {
3         for (int j = n; j >= i; j--)
4             pos[j] -= (pos[i] - pos[i - 1] - 50);
5     }
6 }

这段代码j要倒着写否则先从i开始的话pos[i] - pos[i-1]就变了,我tm居然WA了一板一上午……请叫我绝世大傻逼。

 非矩阵版:

 1 #include <cstdio>
 2 #include <cstring>
 3 #include <iostream>
 4 #include <algorithm>
 5 using namespace std;
 6 
 7 typedef double db;
 8 
 9 const int maxn = 1e3 + 5;
10 int n, pos[20];
11 db f[maxn];
12 db p;
13 
14 db solve() {
15     memset(f, 0, sizeof f);
16     f[1] = 1.0;
17     int t = 1;
18     for (int i = 1; i <= pos[n]; i++) {
19         if (i == pos[t])    f[i] = 0, t++;
20         f[i + 1] += p * f[i];
21         f[i + 2] += (1.0 - p) * f[i];
22     }
23     return f[pos[n] + 1];
24 }
25 
26 int main() {
27     while (scanf("%d%lf", &n, &p) != EOF) {
28         for (int i = 1; i <= n; i++)    scanf("%d", &pos[i]);
29         sort(pos + 1, pos + 1 + n);
30         for (int i = 1; i <= n; i++) {
31             if (pos[i] - pos[i - 1] > 50) {
32                 for (int j = n; j >= i; j--)
33                     pos[j] -= (pos[i] - pos[i - 1] - 50);
34             }
35         }
36         printf("%.7f\n", solve());
37     }
38     return 0;
39 }

 

顺手练一下矩阵,写得low了点:

  1 #pragma comment(linker, "/STACK:1024000000,1024000000")
  2 #include <cstdio>
  3 #include <cstring>
  4 #include <cstdlib>
  5 #include <cmath>
  6 #include <ctime>
  7 #include <cctype>
  8 #include <climits>
  9 #include <iostream>
 10 #include <iomanip>
 11 #include <algorithm>
 12 #include <string>
 13 #include <sstream>
 14 #include <stack>
 15 #include <queue>
 16 #include <set>
 17 #include <map>
 18 #include <vector>
 19 #include <list>
 20 #include <fstream>
 21 #include <bitset>
 22 #define init(a, b) memset(a, b, sizeof(a))
 23 #define rep(i, a, b) for (int i = a; i <= b; i++)
 24 #define irep(i, a, b) for (int i = a; i >= b; i--)
 25 using namespace std;
 26 
 27 typedef double db;
 28 typedef long long ll;
 29 typedef unsigned long long ull;
 30 typedef pair<int, int> P;
 31 const int inf = 0x3f3f3f3f;
 32 const ll INF = 1e18;
 33 
 34 template <typename T> void read(T &x) {
 35     x = 0;
 36     int s = 1, c = getchar();
 37     for (; !isdigit(c); c = getchar())
 38         if (c == '-')    s = -1;
 39     for (; isdigit(c); c = getchar())
 40         x = x * 10 + c - 48;
 41     x *= s;
 42 }
 43 
 44 template <typename T> void write(T x) {
 45     if (x < 0)    x = -x, putchar('-');
 46     if (x > 9)    write(x / 10);
 47     putchar(x % 10 + '0');
 48 }
 49 
 50 template <typename T> void writeln(T x) {
 51     write(x);
 52     puts("");
 53 }
 54 
 55 struct Matrix {
 56     db v[2][2];
 57 
 58     Matrix() {
 59         init(v, 0);
 60     }
 61 
 62     friend Matrix operator * (Matrix A, Matrix B) {
 63         Matrix ret;
 64         rep(i, 0, 1)    rep(j, 0, 1)    rep(k, 0, 1)
 65             ret.v[i][j] += A.v[i][k] * B.v[k][j];
 66         return ret;
 67     }
 68 
 69     friend Matrix operator ^ (Matrix A, int k) {
 70         Matrix ret;
 71         ret.v[0][0] = ret.v[1][1] = 1;
 72         for (; k; k >>= 1) {
 73             if (k & 1)    ret = ret * A;
 74             A = A * A;
 75         }
 76         return ret;
 77     }
 78 };
 79 
 80 int n, pos[15];
 81 db p;
 82 
 83 int main() {
 84     while (~scanf("%d%lf", &n, &p)) {
 85         rep(i, 1, n)    read(pos[i]);
 86         sort(pos + 1, pos + 1 + n);
 87 
 88         pos[0] = 1, pos[n + 1] = pos[n] + 1;
 89         Matrix f, dp;
 90         f.v[0][0] = 1;
 91         rep(i, 1, n + 1) {
 92             int t = pos[i] - pos[i - 1];
 93             dp.v[0][0] = p, dp.v[1][0] = 1 - p, dp.v[0][1] = 1, dp.v[1][1] = 0;
 94             f = f * (dp ^ t);
 95             if (i <= n)    f.v[0][0] = 0;
 96         }
 97 
 98         printf("%.7f\n", f.v[0][0]);
 99     }
100     return 0;
101 }