锁作为并发共享数据,保证一62616964757a686964616fe59b9ee7ad9431333339666133致性的工具,在JAVA平台有多种实现(如 synchronized 和 ReentrantLock等等 ) 。这些已经写好提供的锁为我们开发提供了便利,但是锁的具体性质以及类型却很少被提及。本系列文章将分析JAVA下常见的锁名称以及特性,为大家答疑解惑。
1、自旋锁
自旋锁是采用让当前线程不停地的在循环体内执行实现的,当循环的条件被其他线程改变时 才能进入临界区。如下
01 public class SpinLock {
02
03 private AtomicReference sign =newAtomicReference<>();
04
05 public void lock(){
06 Thread current = Thread.currentThread();
07 while(!sign .compareAndSet(null, current)){
08 }
09 }
10
11 public void unlock (){
12 Thread current = Thread.currentThread();
13 sign .compareAndSet(current, null);
14 }
15 }
使用了CAS原子操作,lock函数将owner设置为当前线程,并且预测原来的值为空。unlock函数将owner设置为null,并且预测值为当前线程。
当有第二个线程调用lock操作时由于owner值不为空,导致循环一直被执行,直至第一个线程调用unlock函数将owner设置为null,第二个线程才能进入临界区。
由于自旋锁只是将当前线程不停地执行循环体,不进行线程状态的改变,所以响应速度更快。但当线程数不停增加时,性能下降明显,因为每个线程都需要执行,占用CPU时间。如果线程竞争不激烈,并且保持锁的时间段。适合使用自旋锁。
注:该例子为非公平锁,获得锁的先后顺序,不会按照进入lock的先后顺序进行。
Java锁的种类以及辨析(二):自旋锁的其他种类
锁作为并发共享数据,保证一致性的工具,在JAVA平台有多种实现(如 synchronized 和 ReentrantLock等等 ) 。这些已经写好提供的锁为我们开发提供了便利,但是锁的具体性质以及类型却很少被提及。本系列文章将分析JAVA下常见的锁名称以及特性,为大家答疑解惑。
2.自旋锁的其他种类
上篇我们讲到了自旋锁,在自旋锁中 另有三种常见的锁形式:TicketLock ,CLHlock 和MCSlock
Ticket锁主要解决的是访问顺序的问题,主要的问题是在多核cpu上
01 package com.alipay.titan.dcc.dal.entity;
02
03 import java.util.concurrent.atomic.AtomicInteger;
04
05 public class TicketLock {
06 private AtomicInteger serviceNum = new AtomicInteger();
07 private AtomicInteger ticketNum = new AtomicInteger();
08 private static final ThreadLocal LOCAL = new ThreadLocal();
09
10 public void lock() {
11 int myticket = ticketNum.getAndIncrement();
12 LOCAL.set(myticket);
13 while (myticket != serviceNum.get()) {
14 }
15
16 }
17
18 public void unlock() {
19 int myticket = LOCAL.get();
20 serviceNum.compareAndSet(myticket, myticket + 1);
21 }
22 }
每次都要查询一个serviceNum 服务号,影响性能(必须要到主内存读取,并阻止其他cpu修改)。
CLHLock 和MCSLock 则是两种类型相似的公平锁,采用链表的形式进行排序,
01 importjava.util.concurrent.atomic.AtomicReferenceFieldUpdater;
02
03 public class CLHLock {
04 public static class CLHNode {
05 private volatile boolean isLocked = true;
06 }
07
08 @SuppressWarnings("unused")
09 private volatileCLHNode tail;
10 private static finalThreadLocal LOCAL = new ThreadLocal();
11 private static finalAtomicReferenceFieldUpdater UPDATER = AtomicReferenceFieldUpdater.newUpdater(CLHLock.class,
12 CLHNode.class,"tail");
13
14 public void lock() {
15 CLHNode node = new CLHNode();
16 LOCAL.set(node);
17 CLHNode preNode = UPDATER.getAndSet(this, node);
18 if (preNode != null) {
19 while (preNode.isLocked) {
20 }
21 preNode = null;
22 LOCAL.set(node);
23 }
24 }
25
26 public void unlock() {
27 CLHNode node = LOCAL.get();
28 if (!UPDATER.compareAndSet(this, node,null)) {
29 node.isLocked = false;
30 }
31 node = null;
32 }
33 }
CLHlock是不停的查询前驱变量, 导致不适合在NUMA 架构下使用(在这种结构下,每个线程分布在不同的物理内存区域)
MCSLock则是对本地变量的节点进行循环。不存在CLHlock 的问题。
01 importjava.util.concurrent.atomic.AtomicReferenceFieldUpdater;
02
03 public class MCSLock {
04 public static class MCSNode {
05 volatile MCSNode next;
06 volatile boolean isLocked = true;
07 }
08
09 private static finalThreadLocal NODE = new ThreadLocal();
10 @SuppressWarnings("unused")
11 private volatileMCSNode queue;
12 private static finalAtomicReferenceFieldUpdater UPDATER = AtomicReferenceFieldUpdater.newUpdater(MCSLock.class,
13 MCSNode.class,"queue");
14
15 public void lock() {
16 MCSNode currentNode = new MCSNode();
17 NODE.set(currentNode);
18 MCSNode preNode = UPDATER.getAndSet(this, currentNode);
19 if (preNode != null) {
20 preNode.next = currentNode;
21 while (currentNode.isLocked) {
22
23 }
24 }
25 }
26
27 public void unlock() {
28 MCSNode currentNode = NODE.get();
29 if (currentNode.next == null) {
30 if (UPDATER.compareAndSet(this, currentNode, null)) {
31
32 } else {
33 while (currentNode.next == null) {
34 }
35 }
36 } else {
37 currentNode.next.isLocked = false;
38 currentNode.next = null;
39 }
40 }
41 }