这里比较Java对象序列化 XML JSON Kryo POF等序列化性能比较。
很多人以为JDK的Java序列化肯定是将Java对象转换成二进制序列化最快的方式,JDK7出来以后,我们发现实际上每次新的JDK比旧版本快。
我们通常以为将Java对象序列化成二进制比序列化成XML或Json更快,其实是错误的,如果你关心性能,建议避免Java序列化。
Java序列化有很多的要求,最主要的一个是包含能够序列化任何东西(或至少任何实现Serializable接口)。这样才能进入其他JVM之中,这很重要,所以有时性能不是主要的要求,标准的格式才最重要。
我们经常看到CPU花费很多时间内进行Java序列化,下面我们研究一下,假设一定Order,虽然只有几个字节,但是序列化以后不是几十个字节,而是600多个字节:
Ordr代码:
public class Order implements Serializable {
private long id;
private String description;
private BigDecimal totalCost = BigDecimal.valueOf(0);
private List orderLines = new ArrayList();
private Customer customer;
...
}
View Code
序列化输出:
----sr--model.Order----h#-----J--idL--customert--Lmodel/Customer;L--descriptiont--Ljava/lang/String;L--orderLinest--Ljava/util/List;L--totalCostt--Ljava/math/BigDecimal;xp--------ppsr--java.util.ArrayListx-----a----I--sizexp----w-----sr--model.OrderLine--&-1-S----I--lineNumberL--costq-~--L--descriptionq-~--L--ordert--Lmodel/Order;xp----sr--java.math.BigDecimalT--W--(O---I--scaleL--intValt--Ljava/math/BigInteger;xr--java.lang.Number-----------xp----sr--java.math.BigInteger-----;-----I--bitCountI--bitLengthI--firstNonzeroByteNumI--lowestSetBitI--signum[--magnitudet--[Bxq-~----------------------ur--[B------T----xp----xxpq-~--xq-~--
正如你可能已经注意到,Java序列化写入不仅是完整的类名,也包含整个类的定义,包含所有被引用的类。类定义可以是相当大的,也许构成了性能和效率的问题,当然这是编写一个单一的对象。如果您正在编写了大量相同的类的对象,这时类定义的开销通常不是一个大问题。另一件事情是,如果你的对象有一类的引用(如元数据对象),那么Java序列化将写入整个类的定义,不只是类的名称,因此,使用Java序列化写出元数据(meta-data)是非常昂贵的。
Externalizable
通过实现Externalizable接口,这是可能优化Java序列化的。实现此接口,避免写出整个类定义,只是类名被写入。它需要你实施readExternal和writeExternal方法方法的,所以需要做一些工作,但相比仅仅是实现Serializable更快,更高效。
Externalizable对小数目对象有效的多。但是对大量对象,或者重复对象,则效率低。
public class Order implements Externalizable {
private long id;
private String description;
private BigDecimal totalCost = BigDecimal.valueOf(0);
private List orderLines = new ArrayList();
private Customer customer;
public Order() {
}
public void readExternal(ObjectInput stream) throws IOException, ClassNotFoundException {
this.id = stream.readLong();
this.description = (String)stream.readObject();
this.totalCost = (BigDecimal)stream.readObject();
this.customer = (Customer)stream.readObject();
this.orderLines = (List)stream.readObject();
}
public void writeExternal(ObjectOutput stream) throws IOException {
stream.writeLong(this.id);
stream.writeObject(this.description);
stream.writeObject(this.totalCost);
stream.writeObject(this.customer);
stream.writeObject(this.orderLines);
}
}
View Code
序列化输出:
----sr--model.Order---*3--^---xpw---------psr--java.math.BigDecimalT--W--(O---I--scaleL--intValt--Ljava/math/BigInteger;xr--java.lang.Number-----------xp----sr--java.math.BigInteger-----;-----I--bitCountI--bitLengthI--firstNonzeroByteNumI--lowestSetBitI--signum[--magnitudet--[Bxq-~----------------------ur--[B------T----xp----xxpsr--java.util.ArrayListx-----a----I--sizexp----w-----sr--model.OrderLine-!!|---S---xpw-----pq-~--q-~--xxx
EclipseLink MOXy - XML 和 JSON
序列化成XML或JSON可以允许其他语言访问,可以实现REST服务等。缺点是文本格式的效率比优化的二进制格式低一些,使用JAXB,你需要使用JAXB注释类,或提供一个XML配置文件。使用@XmlIDREF处理循环。
@XmlRootElement
public class Order {
@XmlID
@XmlAttribute
private long id;
@XmlAttribute
private String description;
@XmlAttribute
private BigDecimal totalCost = BigDecimal.valueOf(0);
private List orderLines = new ArrayList();
private Customer customer;
}
public class OrderLine {
@XmlIDREF
private Order order;
@XmlAttribute
private int lineNumber;
@XmlAttribute
private String description;
@XmlAttribute
private BigDecimal cost = BigDecimal.valueOf(0);
}
View Code
XML输出:
<order id="0" totalCost="0">
<orderLines lineNumber="1" cost="0">
<order>0</order
></orderLines
></order>
View Code
JSOn输出:
{"order":{"id":0,"totalCost":0,"orderLines":[{"lineNumber":1,"cost":0,"order":0}]}}
Kryo
Kryo 是一种快速,高效的序列化的Java框架。 KRYO是新的BSD许可下一个开源项目提供。这是一个很小的项目,只有3名成员,它首先在2009年出品。
工作原理类似于Java序列化KRYO,尊重瞬态字段,但不要求一类是可序列化的。KRYO有一定的局限性,比如需要有一个默认的构造函数的类,在序列化将java.sql.Time java.sql.Date java.sql.Timestamp类会遇到一些问题。
order序列化结果:
------java-util-ArrayLis-----model-OrderLin----java-math-BigDecima---------model-Orde-----
Oracle Coherence POF
Oracle Coherence 产品提供其自己优化的二进制格式,称为POF (可移植对象格式) 。 Oracle Coherence的是一个内存中的数据网格解决方案(分布式缓存) 。是一个商业产品,并需要许可证。
POF提供了一个序列化框架,并可以独立使用。 POF要求类实现一个PortableObject接口和读/写方法。您还可以实现一个单独的序列化类,或使用最新版本的序列化的注解。 POF要求每个类都被提前分配一个固定ID,所以你需要通过某种方式确定这个ID 。 POF格式是二进制格式,非常紧凑,高效,快速的,但确实需要你付出一些工作。
POF的总字节数为一个单一的订单/订单行对象为32个字节, 1593字节100 OrderLines的。我不会放弃的结果, POF是一个商业许可产品的一部分,但是是非常快的。
public class Order implements PortableObject {
private long id;
private String description;
private BigDecimal totalCost = BigDecimal.valueOf(0);
private List orderLines = new ArrayList();
private Customer customer;
public Order() {
}
public void readExternal(PofReader in) throws IOException {
this.id = in.readLong(0);
this.description = in.readString(1);
this.totalCost = in.readBigDecimal(2);
this.customer = (Customer)in.readObject(3);
this.orderLines = (List)in.readCollection(4, new ArrayList());
}
public void writeExternal(PofWriter out) throws IOException {
out.writeLong(0, this.id);
out.writeString(1, this.description);
out.writeBigDecimal(2, this.totalCost);
out.writeObject(3, this.customer);
out.writeCollection(4, this.orderLines);
}
}
View Code
序列化结果:
-----B--G---d-U------A--G-------
性能比较
一个订单包含一个Oderline
Serializer | Size (bytes) | Serialize (operations/second) | Deserialize (operations/second) | % Difference (from Java serialize) | % Difference (deserialize) |
Java Serializable | 636 | 128,634 | 19,180 | 0% | 0% |
Java Externalizable | 435 | 160,549 | 26,678 | 24% | 39% |
EclipseLink MOXy XML | 101 | 348,056 | 47,334 | 170% | 146% |
Kryo | 90 | 359,368 | 346,984 | 179% | 1709% |
一个订单100个oderlines:
Serializer | Size (bytes) | Serialize (operations/second) | Deserialize (operations/second) | % Difference (from Java serialize) | % Difference (deserialize) |
Java Serializable | 2,715 | 16,470 | 10,215 | 0% | 0% |
Java Externalizable | 2,811 | 16,206 | 11,483 | -1% | 12% |
EclipseLink MOXy XML | 6,628 | 7,304 | 2,731 | -55% | -73% |
Kryo | 1216 | 22,862 | 31,499 | 38% | 208% |
要获得象C那样的序列化性能,直接自己编写。
Serialization ByteBuffer Unsafe三者性能比较:
三者性能测试代码:
package com.ifenglian.test.safe;
import sun.misc.Unsafe;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;
import java.lang.reflect.Field;
import java.nio.ByteBuffer;
import java.util.Arrays;
public final class TestSerialisationPerf {
public static final int REPETITIONS = 1 * 1000 * 1000;
private static ObjectToBeSerialised ITEM = new ObjectToBeSerialised(1010L, true, 777, 99,
new double[] { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 },
new long[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 });
public static void main(final String[] arg) throws Exception {
for (final PerformanceTestCase testCase : testCases) {
for (int i = 0; i < 5; i++) {
testCase.performTest();
System.out.format("%d %s\twrite=%,dns read=%,dns total=%,dns\n", i, testCase.getName(),
testCase.getWriteTimeNanos(), testCase.getReadTimeNanos(),
testCase.getWriteTimeNanos() + testCase.getReadTimeNanos());
if (!ITEM.equals(testCase.getTestOutput())) {
throw new IllegalStateException("Objects do not match");
}
System.gc();
Thread.sleep(3000);
}
}
}
private static final PerformanceTestCase[] testCases = {
new PerformanceTestCase("Serialisation", REPETITIONS, ITEM) {
ByteArrayOutputStream baos = new ByteArrayOutputStream();
public void testWrite(ObjectToBeSerialised item) throws Exception {
for (int i = 0; i < REPETITIONS; i++) {
baos.reset();
ObjectOutputStream oos = new ObjectOutputStream(baos);
oos.writeObject(item);
oos.close();
}
}
public ObjectToBeSerialised testRead() throws Exception {
ObjectToBeSerialised object = null;
for (int i = 0; i < REPETITIONS; i++) {
ByteArrayInputStream bais = new ByteArrayInputStream(baos.toByteArray());
ObjectInputStream ois = new ObjectInputStream(bais);
object = (ObjectToBeSerialised) ois.readObject();
}
return object;
}
},
new PerformanceTestCase("ByteBuffer", REPETITIONS, ITEM) {
ByteBuffer byteBuffer = ByteBuffer.allocate(1024);
public void testWrite(ObjectToBeSerialised item) throws Exception {
for (int i = 0; i < REPETITIONS; i++) {
byteBuffer.clear();
item.write(byteBuffer);
}
}
public ObjectToBeSerialised testRead() throws Exception {
ObjectToBeSerialised object = null;
for (int i = 0; i < REPETITIONS; i++) {
byteBuffer.flip();
object = ObjectToBeSerialised.read(byteBuffer);
}
return object;
}
},
new PerformanceTestCase("UnsafeMemory", REPETITIONS, ITEM) {
UnsafeMemory buffer = new UnsafeMemory(new byte[1024]);
public void testWrite(ObjectToBeSerialised item) throws Exception {
for (int i = 0; i < REPETITIONS; i++) {
buffer.reset();
item.write(buffer);
}
}
public ObjectToBeSerialised testRead() throws Exception {
ObjectToBeSerialised object = null;
for (int i = 0; i < REPETITIONS; i++) {
buffer.reset();
object = ObjectToBeSerialised.read(buffer);
}
return object;
}
}, };
}
abstract class PerformanceTestCase {
private final String name;
private final int repetitions;
private final ObjectToBeSerialised testInput;
private ObjectToBeSerialised testOutput;
private long writeTimeNanos;
private long readTimeNanos;
public PerformanceTestCase(final String name, final int repetitions, final ObjectToBeSerialised testInput) {
this.name = name;
this.repetitions = repetitions;
this.testInput = testInput;
}
public String getName() {
return name;
}
public ObjectToBeSerialised getTestOutput() {
return testOutput;
}
public long getWriteTimeNanos() {
return writeTimeNanos;
}
public long getReadTimeNanos() {
return readTimeNanos;
}
public void performTest() throws Exception {
final long startWriteNanos = System.nanoTime();
testWrite(testInput);
writeTimeNanos = (System.nanoTime() - startWriteNanos) / repetitions;
final long startReadNanos = System.nanoTime();
testOutput = testRead();
readTimeNanos = (System.nanoTime() - startReadNanos) / repetitions;
}
public abstract void testWrite(ObjectToBeSerialised item) throws Exception;
public abstract ObjectToBeSerialised testRead() throws Exception;
}
class ObjectToBeSerialised implements Serializable {
private static final long serialVersionUID = 10275539472837495L;
private final long sourceId;
private final boolean special;
private final int orderCode;
private final int priority;
private final double[] prices;
private final long[] quantities;
public ObjectToBeSerialised(final long sourceId, final boolean special, final int orderCode, final int priority,
final double[] prices, final long[] quantities) {
this.sourceId = sourceId;
this.special = special;
this.orderCode = orderCode;
this.priority = priority;
this.prices = prices;
this.quantities = quantities;
}
public void write(final ByteBuffer byteBuffer) {
byteBuffer.putLong(sourceId);
byteBuffer.put((byte) (special ? 1 : 0));
byteBuffer.putInt(orderCode);
byteBuffer.putInt(priority);
byteBuffer.putInt(prices.length);
for (final double price : prices) {
byteBuffer.putDouble(price);
}
byteBuffer.putInt(quantities.length);
for (final long quantity : quantities) {
byteBuffer.putLong(quantity);
}
}
public static ObjectToBeSerialised read(final ByteBuffer byteBuffer) {
final long sourceId = byteBuffer.getLong();
final boolean special = 0 != byteBuffer.get();
final int orderCode = byteBuffer.getInt();
final int priority = byteBuffer.getInt();
final int pricesSize = byteBuffer.getInt();
final double[] prices = new double[pricesSize];
for (int i = 0; i < pricesSize; i++) {
prices[i] = byteBuffer.getDouble();
}
final int quantitiesSize = byteBuffer.getInt();
final long[] quantities = new long[quantitiesSize];
for (int i = 0; i < quantitiesSize; i++) {
quantities[i] = byteBuffer.getLong();
}
return new ObjectToBeSerialised(sourceId, special, orderCode, priority, prices, quantities);
}
public void write(final UnsafeMemory buffer) {
buffer.putLong(sourceId);
buffer.putBoolean(special);
buffer.putInt(orderCode);
buffer.putInt(priority);
buffer.putDoubleArray(prices);
buffer.putLongArray(quantities);
}
public static ObjectToBeSerialised read(final UnsafeMemory buffer) {
final long sourceId = buffer.getLong();
final boolean special = buffer.getBoolean();
final int orderCode = buffer.getInt();
final int priority = buffer.getInt();
final double[] prices = buffer.getDoubleArray();
final long[] quantities = buffer.getLongArray();
return new ObjectToBeSerialised(sourceId, special, orderCode, priority, prices, quantities);
}
@Override
public boolean equals(final Object o) {
if (this == o) {
return true;
}
if (o == null || getClass() != o.getClass()) {
return false;
}
final ObjectToBeSerialised that = (ObjectToBeSerialised) o;
if (orderCode != that.orderCode) {
return false;
}
if (priority != that.priority) {
return false;
}
if (sourceId != that.sourceId) {
return false;
}
if (special != that.special) {
return false;
}
if (!Arrays.equals(prices, that.prices)) {
return false;
}
if (!Arrays.equals(quantities, that.quantities)) {
return false;
}
return true;
}
}
class UnsafeMemory {
private static final Unsafe unsafe;
static {
try {
Field field = Unsafe.class.getDeclaredField("theUnsafe");
field.setAccessible(true);
unsafe = (Unsafe) field.get(null);
} catch (Exception e) {
throw new RuntimeException(e);
}
}
private static final long byteArrayOffset = unsafe.arrayBaseOffset(byte[].class);
private static final long longArrayOffset = unsafe.arrayBaseOffset(long[].class);
private static final long doubleArrayOffset = unsafe.arrayBaseOffset(double[].class);
private static final int SIZE_OF_BOOLEAN = 1;
private static final int SIZE_OF_INT = 4;
private static final int SIZE_OF_LONG = 8;
private int pos = 0;
private final byte[] buffer;
public UnsafeMemory(final byte[] buffer) {
if (null == buffer) {
throw new NullPointerException("buffer cannot be null");
}
this.buffer = buffer;
}
public void reset() {
this.pos = 0;
}
public void putBoolean(final boolean value) {
unsafe.putBoolean(buffer, byteArrayOffset + pos, value);
pos += SIZE_OF_BOOLEAN;
}
public boolean getBoolean() {
boolean value = unsafe.getBoolean(buffer, byteArrayOffset + pos);
pos += SIZE_OF_BOOLEAN;
return value;
}
public void putInt(final int value) {
unsafe.putInt(buffer, byteArrayOffset + pos, value);
pos += SIZE_OF_INT;
}
public int getInt() {
int value = unsafe.getInt(buffer, byteArrayOffset + pos);
pos += SIZE_OF_INT;
return value;
}
public void putLong(final long value) {
unsafe.putLong(buffer, byteArrayOffset + pos, value);
pos += SIZE_OF_LONG;
}
public long getLong() {
long value = unsafe.getLong(buffer, byteArrayOffset + pos);
pos += SIZE_OF_LONG;
return value;
}
public void putLongArray(final long[] values) {
putInt(values.length);
long bytesToCopy = values.length << 3;
unsafe.copyMemory(values, longArrayOffset, buffer, byteArrayOffset + pos, bytesToCopy);
pos += bytesToCopy;
}
public long[] getLongArray() {
int arraySize = getInt();
long[] values = new long[arraySize];
long bytesToCopy = values.length << 3;
unsafe.copyMemory(buffer, byteArrayOffset + pos, values, longArrayOffset, bytesToCopy);
pos += bytesToCopy;
return values;
}
public void putDoubleArray(final double[] values) {
putInt(values.length);
long bytesToCopy = values.length << 3;
unsafe.copyMemory(values, doubleArrayOffset, buffer, byteArrayOffset + pos, bytesToCopy);
pos += bytesToCopy;
}
public double[] getDoubleArray() {
int arraySize = getInt();
double[] values = new double[arraySize];
long bytesToCopy = values.length << 3;
unsafe.copyMemory(buffer, byteArrayOffset + pos, values, doubleArrayOffset, bytesToCopy);
pos += bytesToCopy;
return values;
}
}
View Code
测试结果:
2.8GHz Nehalem - Java 1.7.0_04
==============================
0 Serialisation write=2,517ns read=11,570ns total=14,087ns
1 Serialisation write=2,198ns read=11,122ns total=13,320ns
2 Serialisation write=2,190ns read=11,011ns total=13,201ns
3 Serialisation write=2,221ns read=10,972ns total=13,193ns
4 Serialisation write=2,187ns read=10,817ns total=13,004ns
0 ByteBuffer write=264ns read=273ns total=537ns
1 ByteBuffer write=248ns read=243ns total=491ns
2 ByteBuffer write=262ns read=243ns total=505ns
3 ByteBuffer write=300ns read=240ns total=540ns
4 ByteBuffer write=247ns read=243ns total=490ns
0 UnsafeMemory write=99ns read=84ns total=183ns
1 UnsafeMemory write=53ns read=82ns total=135ns
2 UnsafeMemory write=63ns read=66ns total=129ns
3 UnsafeMemory write=46ns read=63ns total=109ns
4 UnsafeMemory write=48ns read=58ns total=106ns
2.4GHz Sandy Bridge - Java 1.7.0_04
===================================
0 Serialisation write=1,940ns read=9,006ns total=10,946ns
1 Serialisation write=1,674ns read=8,567ns total=10,241ns
2 Serialisation write=1,666ns read=8,680ns total=10,346ns
3 Serialisation write=1,666ns read=8,623ns total=10,289ns
4 Serialisation write=1,715ns read=8,586ns total=10,301ns
0 ByteBuffer write=199ns read=198ns total=397ns
1 ByteBuffer write=176ns read=178ns total=354ns
2 ByteBuffer write=174ns read=174ns total=348ns
3 ByteBuffer write=172ns read=183ns total=355ns
4 ByteBuffer write=174ns read=180ns total=354ns
0 UnsafeMemory write=38ns read=75ns total=113ns
1 UnsafeMemory write=26ns read=52ns total=78ns
2 UnsafeMemory write=26ns read=51ns total=77ns
3 UnsafeMemory write=25ns read=51ns total=76ns
4 UnsafeMemory write=27ns read=50ns total=77ns
很显然允许自己内存操作的 Unsafe性能是最快的。