概述

上一篇 说了 STM32CubeMX之串口的使用 (查询模式) ,这一章来说说串口中断模式收发数据。

环境:

  • 开发板:STM32F4探索者(正点原子)

一. 在STM32CubeMX 图形化中开启串口中断

在 前一篇 STM32CubeMX之串口的使用 (查询模式) 的文章的基础上,打开串口中断,如下图所示:




使用Cubemx配置串口为DMA接收_使用Cubemx配置串口为DMA接收


然后就可以生成工程了

二. 串口中断相关函数介绍

串口中断函数

  • 如串口1中断函数: USART1_IRQHandler()

发送接收函数

  • 串口中断模式发送: HAL_UART_Transmit_IT()
HAL_StatusTypeDef HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)


  1. 串口实例的指针
  2. 想要发送的数据的指针,如数组的首地址
  3. 想要发送数据的个数
  4. 串口中断模式接收: HAL_UART_Receive_IT()
HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)


  1. 串口实例的指针
  2. 接收数据缓冲块的首地址,如数组的首地址
  3. 想要接收数据的个数

相关回调函数

  • 串口中断模式发送完成回调: HAL_UART_TxCpltCallback
  • 串口中断模式接收完成回调: HAL_UART_RxCpltCallback

三. 串口中断函数使用实例

  • stm32f4xx_it.c 中,先看一下串口中断函数有没有添加上,如下图所示:


使用Cubemx配置串口为DMA接收_c++ 中断_02


现在就可以使用中断相关发送接收函数

在这里为了方便测试,我添加了一个如下结构体并进行了初始化:


使用Cubemx配置串口为DMA接收_simulink接收串口数据_03


  • 发送数据

在主函数中,5s 进行一次发送


使用Cubemx配置串口为DMA接收_c++ 中断_04


发送成功产生回调,该函数在main.c


使用Cubemx配置串口为DMA接收_使用Cubemx配置串口为DMA接收_05


然后在主程序中查询到发送成功,打印 send done


使用Cubemx配置串口为DMA接收_simulink接收串口数据_06


  • 接收数据

在进入循环的之前,就说明串口要进行10个字节的数据接收


使用Cubemx配置串口为DMA接收_c++ 中断_07


接收10个字节成功产生回调,该函数在main.c


使用Cubemx配置串口为DMA接收_simulink接收串口数据_08


然后在主函数中,查询是否接收成功


使用Cubemx配置串口为DMA接收_simulink接收串口数据_09


最后运行程序,可以在串口调试助手上显示


使用Cubemx配置串口为DMA接收_c++ 中断_10


注意:

若定长串口中断接收数据,数据溢出,将会产生数据溢出错误,中断不再接收数据,如下图:


使用Cubemx配置串口为DMA接收_串口_11


错误回调函数如下:


//错误回调  
 void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart)   
{       if( rxtx_it_usart.huart1 == huart)       
        {         
             printf("error %drn",huart->ErrorCode);       
        }   
}


以上例子,代码已上传至我的博客

四. HAL库中的串口相关源码介绍

串口中断函数中的处理函数 HAL_UART_IRQHandler


/* @brief  This function handles UART interrupt request.    
    * @param  huart  Pointer to a UART_HandleTypeDef structure that contains    
    *          the configuration information for the specified UART module.    
    * @retval None    
    * /  
 void HAL_UART_IRQHandler(UART_HandleTypeDef huart)   {   
  uint32_t isrflags   = READ_REG(huart->Instance->SR);   
  uint32_t cr1its     = READ_REG(huart->Instance->CR1);   
  uint32_t cr3its     = READ_REG(huart->Instance->CR3);  
   uint32_t errorflags = 0x00U;     uint32_t dmarequest = 0x00U;
/* If no error occurs */
errorflags = (isrflags & (uint32_t)(USART_SR_PE | USART_SR_FE | USART_SR_ORE | USART_SR_NE));
if (errorflags == RESET)
{
  /* UART in mode Receiver -------------------------------------------------*/
  if (((isrflags & USART_SR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET))
  {
    UART_Receive_IT(huart);
    return;
  }
}

/* If some errors occur */
if ((errorflags != RESET) && (((cr3its & USART_CR3_EIE) != RESET) || ((cr1its & (USART_CR1_RXNEIE | USART_CR1_PEIE)) != RESET)))
{
  /* UART parity error interrupt occurred ----------------------------------*/
  if (((isrflags & USART_SR_PE) != RESET) && ((cr1its & USART_CR1_PEIE) != RESET))
  {
    huart->ErrorCode |= HAL_UART_ERROR_PE;
  }

  /* UART noise error interrupt occurred -----------------------------------*/
  if (((isrflags & USART_SR_NE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET))
  {
    huart->ErrorCode |= HAL_UART_ERROR_NE;
  }

  /* UART frame error interrupt occurred -----------------------------------*/
  if (((isrflags & USART_SR_FE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET))
  {
    huart->ErrorCode |= HAL_UART_ERROR_FE;
  }

  /* UART Over-Run interrupt occurred --------------------------------------*/
  if (((isrflags & USART_SR_ORE) != RESET) && (((cr1its & USART_CR1_RXNEIE) != RESET) || ((cr3its & USART_CR3_EIE) != RESET)))
  {
    huart->ErrorCode |= HAL_UART_ERROR_ORE;
  }

  /* Call UART Error Call back function if need be --------------------------*/
  if (huart->ErrorCode != HAL_UART_ERROR_NONE)
  {
    /* UART in mode Receiver -----------------------------------------------*/
    if (((isrflags & USART_SR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET))
    {
      UART_Receive_IT(huart);
      //  printf("rcv agin error %drn",huart->ErrorCode);
    }

    /* If Overrun error occurs, or if any error occurs in DMA mode reception,
       consider error as blocking */
    dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR);
    if (((huart->ErrorCode & HAL_UART_ERROR_ORE) != RESET) || dmarequest)
    {
      /* Blocking error : transfer is aborted
         Set the UART state ready to be able to start again the process,
         Disable Rx Interrupts, and disable Rx DMA request, if ongoing */
      UART_EndRxTransfer(huart);

      /* Disable the UART DMA Rx request if enabled */
      if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
      {
        CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);

        /* Abort the UART DMA Rx stream */
        if (huart->hdmarx != NULL)
        {
          /* Set the UART DMA Abort callback :
             will lead to call HAL_UART_ErrorCallback() at end of DMA abort procedure */
          huart->hdmarx->XferAbortCallback = UART_DMAAbortOnError;
          if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
          {
            /* Call Directly XferAbortCallback function in case of error */
            huart->hdmarx->XferAbortCallback(huart->hdmarx);
          }
        }
        else
        {
          /* Call user error callback */
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)               /Call registered error callback/               huart->ErrorCallback(huart);   #else               /Call legacy weak error callback/               HAL_UART_ErrorCallback(huart);   #endif / USE_HAL_UART_REGISTER_CALLBACKS /             }           }           else           {             / Call user error callback /   #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)             /Call registered error callback/             huart->ErrorCallback(huart);
#else             /Call legacy weak error callback/             HAL_UART_ErrorCallback(huart);             //printf("dma over error rn");   #endif / USE_HAL_UART_REGISTER_CALLBACKS /           }         }         else         {           / Non Blocking error : transfer could go on.              Error is notified to user through user error callback /   #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)           /Call registered error callback/           huart->ErrorCallback(huart);
#else           /Call legacy weak error callback/           HAL_UART_ErrorCallback(huart);           //printf("usart over error rn");   #endif / USE_HAL_UART_REGISTER_CALLBACKS /
huart->ErrorCode = HAL_UART_ERROR_NONE;
    }
  }
  return;
} /* End if some error occurs */

/* UART in mode Transmitter ------------------------------------------------*/
if (((isrflags & USART_SR_TXE) != RESET) && ((cr1its & USART_CR1_TXEIE) != RESET))
{
  UART_Transmit_IT(huart);
  return;
}

/* UART in mode Transmitter end --------------------------------------------*/
if (((isrflags & USART_SR_TC) != RESET) && ((cr1its & USART_CR1_TCIE) != RESET))
{
  UART_EndTransmit_IT(huart);
  return;
}


}

主要是分为四个部分:

  • 先读寄存器状态
uint32_t isrflags   = READ_REG(huart->Instance->SR);  
 uint32_t cr1its     = READ_REG(huart->Instance->CR1);  
 uint32_t cr3its     = READ_REG(huart->Instance->CR3);


  • 如果没有错误状态产生,且是接收中断,就进行数据接收
if (errorflags == RESET)  
 {   
        /* UART in mode Receiver -------------------------------------*/     
        if (((isrflags & USART_SR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET))   
        {     
            UART_Receive_IT(huart);    
            return;    
          }  
 }


  • 错误处理
//当有parity error,noise error,frame error,Over-Run 错误产生的时候,通过以下回调来处理 
HAL_UART_ErrorCallback(huart);


  • 注意
    通过查看HAL库,会发现该函数的定义用了关键字__weak (弱符号声明) ,如下:
c __weak void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart) {  
 /* Prevent unused argument(s) compilation warning */   
UNUSED(huart);  
 /* NOTE: This function should not be modified, when the callback is needed,      
      the HAL_UART_ErrorCallback could be implemented in the user file    */ 
}


意味着,它可以由用户自定义函数,如果用户未自定义,否则就使用上述代码

  • 数据发送
/* UART in mode Transmitter ------------------------------------------------*/   
  if (((isrflags & USART_SR_TXE) != RESET) && ((cr1its & USART_CR1_TXEIE) != RESET))   
  {       UART_Transmit_IT(huart);      
           return;  
   }


  • 结束数据发送
/* UART in mode Transmitter end --------------------------------------------*/  
 if (((isrflags & USART_SR_TC) != RESET) && ((cr1its & USART_CR1_TCIE) != RESET))   
{     UART_EndTransmit_IT(huart);  
   return;  
 }


串口中断发送数据函数 HAL_UART_Transmit_IT()


HAL_StatusTypeDef HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
{
  /* Check that a Tx process is not already ongoing */
  if (huart->gState == HAL_UART_STATE_READY)
  {
    if ((pData == NULL) || (Size == 0U))
    {
      return HAL_ERROR;
    }

    /* Process Locked */
    __HAL_LOCK(huart);

    huart->pTxBuffPtr = pData;
    huart->TxXferSize = Size;
    huart->TxXferCount = Size;

    huart->ErrorCode = HAL_UART_ERROR_NONE;
    huart->gState = HAL_UART_STATE_BUSY_TX;

    /* Process Unlocked */
    __HAL_UNLOCK(huart);

    /* Enable the UART Transmit data register empty Interrupt */
    __HAL_UART_ENABLE_IT(huart, UART_IT_TXE);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}


  • 对一些状态进行初始化,解释如下
huart->pTxBuffPtr = pData; //指向我们传递进来的数组   huart->TxXferSize = Size;  //要发送数据的个数 
huart->TxXferCount = Size; //用来计数,未接收数据的个数,发送一个数据就自减,减为0时,发送完成
huart->ErrorCode = HAL_UART_ERROR_NONE; 
huart->gState = HAL_UART_STATE_BUSY_TX;


  • 使能当数据寄存器为空时,发生中断
/* Enable the UART Transmit data register empty Interrupt */ 
      __HAL_UART_ENABLE_IT(huart, UART_IT_TXE);


串口中断接收函数 HAL_UART_Receive_IT


HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
{
  /* Check that a Rx process is not already ongoing */
  if (huart->RxState == HAL_UART_STATE_READY)
  {
    if ((pData == NULL) || (Size == 0U))
    {
      return HAL_ERROR;
    }

    /* Process Locked */
    __HAL_LOCK(huart);

    huart->pRxBuffPtr = pData;
    huart->RxXferSize = Size;
    huart->RxXferCount = Size;

    huart->ErrorCode = HAL_UART_ERROR_NONE;
    huart->RxState = HAL_UART_STATE_BUSY_RX;

    /* Process Unlocked */
    __HAL_UNLOCK(huart);

    /* Enable the UART Parity Error Interrupt */
    __HAL_UART_ENABLE_IT(huart, UART_IT_PE);

    /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
    __HAL_UART_ENABLE_IT(huart, UART_IT_ERR);

    /* Enable the UART Data Register not empty Interrupt */
    __HAL_UART_ENABLE_IT(huart, UART_IT_RXNE);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}


  • 对一些状态进行初始化,解释如下
huart->pRxBuffPtr = pData; //指针指向接收数据缓冲区,我们传送进来的数组首地址    
   huart->RxXferSize = Size;  //要接收数据的个数     
   huart->RxXferCount = Size; //用来计数,未接收数据的个数,接收一个数据就自减,减为0时,接收完成
   
  huart->ErrorCode = HAL_UART_ERROR_NONE;
  huart->RxState = HAL_UART_STATE_BUSY_RX;


  • 使能 校验错误中断,帧错误,噪声错误中断,数据溢出中断
/ Enable the UART Parity Error Interrupt /    
   __HAL_UART_ENABLE_IT(huart, UART_IT_PE);

   /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
  __HAL_UART_ENABLE_IT(huart, UART_IT_ERR);

  /* Enable the UART Data Register not empty Interrupt */
  __HAL_UART_ENABLE_IT(huart, UART_IT_RXNE);


后续我还会继续分享STM32CuBeMX的相关操作,以及对库函数源码进行剖析,相信你会学到更多知识。

文章有帮助到你,点赞,收藏,关注我吧!