from sklearn.feature_extraction.text import CountVectorizer,TfidfTransformer
import os
import re
import jieba.posseg as pseg
# 加载停用词表
'''stop_words_path = './stop_words/'
stopwords1 = [line.rstrip() for line in open(os.path.join(stop_words_path, '中文停用词库.txt'), 'r',encoding='utf-8')]
stopwords2 = [line.rstrip() for line in open(os.path.join(stop_words_path, '哈工大停用词表.txt'), 'r',encoding='utf-8')]
stopwords3 = [line.rstrip() for line in
open(os.path.join(stop_words_path, '四川大学机器智能实验室停用词库.txt'), 'r', encoding='utf-8')]
stopwords = stopwords1 + stopwords2 + stopwords3
'''
def proc_text(raw_line):
"""
处理文本数据
返回分词结果
"""
# 1. 使用正则表达式去除非中文字符
filter_pattern = re.compile('[^\u4E00-\u9FD5]+')
chinese_only = filter_pattern.sub('', raw_line)
# 2. 结巴分词+词性标注
word_list = pseg.cut(chinese_only)
# 3. 去除停用词,保留有意义的词性
# 动词,形容词,副词
used_flags = ['v', 'a', 'ad']
meaninful_words = []
for word, flag in word_list:
if flag in used_flags:
meaninful_words.append(word)
return ' '.join(meaninful_words)
count_vectorizer = CountVectorizer()
transformer=TfidfTransformer()
print(count_vectorizer)
ch_text1 = ' 非常失望,剧本完全敷衍了事,主线剧情没突破大家可以理解,可所有的人物都缺乏动机,正邪之间、妇联内部都没什么火花。团结-分裂-团结的三段式虽然老套但其实也可以利用积攒下来的形象魅力搞出意思,但剧本写得非常肤浅、平面。场面上调度混乱呆板,满屏的铁甲审美疲劳。只有笑点算得上差强人意。'
ch_text2 = ' 2015年度最失望作品。以为面面俱到,实则画蛇添足;以为主题深刻,实则老调重弹;以为推陈出新,实则俗不可耐;以为场面很high,实则high劲不足。气!上一集的趣味全无,这集的笑点明显刻意到心虚。全片没有任何片段给我有紧张激动的时候,太弱了,跟奥创一样。'
ch_text3 = ' 《铁人2》中勾引钢铁侠,《妇联1》中勾引鹰眼,《美队2》中勾引美国队长,在《妇联2》中终于……跟绿巨人表白了,黑寡妇用实际行动告诉了我们什么叫忠贞不二;而且为了治疗不孕不育连作战武器都变成了两支验孕棒(坚决相信快银没有死,后面还得回来)'
ch_text4 = ' 虽然从头打到尾,但是真的很无聊啊。'
ch_text5 = ' 剧情不如第一集好玩了,全靠密集笑点在提神。僧多粥少的直接后果就是每部寡姐都要换着队友谈恋爱,这特么比打斗还辛苦啊,真心求放过~~~(结尾彩蛋还以为是洛基呢,结果我呸!)'
ch_texts = [ch_text1, ch_text2, ch_text3, ch_text4, ch_text5]
corpus = [proc_text(ch_text) for ch_text in ch_texts]
print(corpus)
tfidf=transformer.fit_transform(count_vectorizer.fit_transform(corpus))
word = count_vectorizer.get_feature_names()
print(tfidf)
print(tfidf.toarray())
for i in range(len(tfidf.toarray())):#打印每类文本的tf-idf词语权重,第一个for遍历所有文本,第二个for便利某一类文本下的词语权重
print (u"-------这里输出第",i,u"类文本的词语tf-idf权重------")
for j in range(len(word)):
print(word[j],tfidf.toarray()[i][j])
new_text = '剧情混乱,太失望了'
new_pro_text = proc_text(new_text)
print(new_pro_text)
print(transformer.fit_transform(count_vectorizer.transform([new_pro_text])).toarray())
词袋模型和TF-IDF
原创自强不息的小芦同学 ©著作权
文章标签 词袋模型和TF-IDF 文章分类 代码人生
-
特征工程(三):特征缩放,从词袋到 TF-IDF数据 缩放 数据集 归一化 参数设置
-
python TF-IDF
python TF-IDF
python -
【MapReduce】TF-IDF
文章目录TF-IDF一、概述二、案例_统计猫眼电影数据中的TF-IDF1.整体思路2.代码实现Step 1 — 计算 TFpart 1:自定义SQLBean获取需要数据p
mapreduce java apache hadoop -
空间向量模型和tf-idf
向量空间模型向量空间模型是一个把文本文件表示为标识符(比如索引)向量的
向量空间模型 权重 词频 -
Python tf模型存储 python tf-idf
1.首先我们要明白tf-idf计算的数学公式: &nb
Python tf模型存储 python tf-idf 词频 ide