算法的复杂度分为   时间复杂度   和    空间复杂度,算法的复杂性体现在运行该算法时的计算机所需资源的多少上,计算机资源最重要的是时间和空间(即寄存器)资源,因此复杂度分为时间和空间复杂度

时间复杂度作用:执行算法所需要的工作量

空间复杂度作用:执行这个算法所需要的内存空间

最坏时间复杂度和平均时间复杂度 
 最坏情况下的时间复杂度称最坏时间复杂度。一般不特别说明,讨论的时间复杂度均是最坏情况下的时间复杂度。 
 这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的上界,这就保证了算法的运行时间不会比任何更长。 
 平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,算法的期望运行时间。设每种情况的出现的概率为pi,平均时间复杂度则为sum(pi*f(n)) 

常用排序算法的时间复杂度

最差时间分析  平均时间复杂度 稳定度     空间复杂度   
冒泡排序    O(n2)   O(n2)       稳定        O(1)  
快速排序    O(n2)   O(n*log2n)  不稳定  O(log2n)~O(n)     
选择排序    O(n2)   O(n2)       稳定      O(1)    
二叉树排序  O(n2) O(n*log2n)    不稳定     O(n)     
插入排序    O(n2)   O(n2)       稳定      O(1)    
堆排序 O(n*log2n) O(n*log2n)   不稳定     O(1)    
希尔排序    O        O          不稳定     O(1)

空间复杂度 
空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度,记做S(n)=O(f(n))。

对于一个算法来说,空间复杂度和时间复杂度往往是相互影响的。当追求一个较好的时间复杂度时,可能会使空间复杂度的性能变差,即可能导致占用较多的存储空间;反之,当追求一个较好的空间复杂度时,可能会使时间复杂度的性能变差,即可能导致占用较长的运行时间。

有时我们可以用空间来换取时间以达到目的。