HDFS以流式数据访问模式来存储超大文件,运行与商用硬件集群上。

   1、超大文件

         "超大文件"在这里指具有几百MB,几百GB甚至几百TB大小的文件。目前已经有存储PB级数据的Hadoop集群了。

   2、流式数据访问

        HDFS的构建思路是:“一次写入,多次读取”是最高效的访问模式。数据集通常由数据源生成或从数据源复制而来,接着长时间在此数据集上进行各类分析。每次分析都将涉及的大部分数据甚至全部,因此读取整个数据集的时间延迟比读取第一条记录的时间延迟更重要。

   3、商用硬件

       Hadoop并不需要运行在昂贵且高可靠的硬件上。它是设计运行在商用硬件的集群上的,因此至少对于庞大的集群来说,节点故障的几率还是非常高德。HDFS遇到上述故障时,被设计成能够继续运行而且不让用户察觉到明显的中断。

   HDFS是一个不错的分布式文件系统,它有很多的优点,但也存在有一些缺点。目前而言,它在以下几个方面就效率不佳:

   1、低延时访问

       HDFS 不太适合于那些要求低延时(数十毫秒)访问的应用程序,因为HDFS是设计用于大吞吐量数据的,这是以一定延时为代价的。HDFS是单Master的,所 有的对文件的请求都要经过它,当请求多时,肯定会有延时。当前,对于那些有低延时要求的应用程序,HBase是一个更好的选择。现在HBase的版本是 0.20,相对于以前的版本,在性能上有了很大的提升,它的口号就是goes realtime。使用缓存或多master设计可以降低client的数据请求压力,以减少延时。还有就是对HDFS系统内部的修改,这就得权衡大吞吐量与低延时了,HDFS不是万能的银弹。

    2、大量小文件

       因为Namenode把文件系统的元数据放置在内存中,所以文件系统所能容纳的文件数目是由Namenode的内存大小来决定。一般来说,每一个文件、文件 夹和Block需要占据150字节左右的空间,所以,如果你有100万个文件,每一个占据一个Block,你就至少需要300MB内存。当前来说,数百万 的文件还是可行的,当扩展到数十亿时,对于当前的硬件水平来说就没法实现了。还有一个问题就是,因为Map task的数量是由splits来决定的,所以用MR处理大量的小文件时,就会产生过多的Maptask,线程管理开销将会增加作业时间。举个例子,处理 10000M的文件,若每个split为1M,那就会有10000个Maptasks,会有很大的线程开销;若每个split为100M,则只有100个 Maptasks,每个Maptask将会有更多的事情做,而线程的管理开销也将减小很多。

      要想让HDFS能处理好小文件,有不少方法:

       1、利用SequenceFile、MapFile、Har等方式归档小文件,这个方法的原理就是把小文件归档起来管理,HBase就是基于此的。对于这种方法,如果想找回原来的小文件内容,那就必须得知道与归档文件的映射关系。

       2、横向扩展,一个Hadoop集群能管理的小文件有限,那就把几个Hadoop集群拖在一个虚拟服务器后面,形成一个大的Hadoop集群。google也是这么干过的。3、多Master设计,这个作用显而易见了。正在研发中的GFS II也要改为分布式多Master设计,还支持Master的Failover,而且Block大小改为1M,有意要调优处理小文件啊。附带个Alibaba DFS的设计,也是多Master设计,它把Metadata的映射存储和管理分开了,由多个Metadata存储节点和一个查询Master节点组成。

   3、多用户写,任意文件修改

      目前Hadoop只支持单用户写,不支持并发多用户写。可以使用Append操作在文件的末尾添加数据,但不支持在文件的任意位置进行修改。

      利用Chubby、ZooKeeper之类的分布式协调服务来解决一致性问题。