本文者:邛亦简

编辑Smarter



所谓图像翻译,指从一副图像到另一副图像的转换。可以类比机器翻译,一种语言转换为另一种语言。下图就是一些典型的图像翻译任务:比如语义分割图转换为真实街景图,灰色图转换为彩色图,白天转换为黑夜......

图像翻译三部曲:pix2pix, pix2pixHD, vid2vid_光流

本文主要介绍图像翻译的三个比较经典的模型pix2pix,pix2pixHD, vid2vid。pix2pix提出了一个统一的框架解决了各类图像翻译问题,pix2pixHD则在pix2pix的基础上,较好的解决了高分辨率图像转换(翻译)的问题,vid2vid则在pix2pixHD的基础上,较好的解决了高分辨率的视频转换问题。三个模型一步一个脚印,不断改进。

1、pix2pix

论文:pix2pix 代码:GitHub

本文最大的贡献在于提出了一个统一的框架解决了图像翻译问题。

在这篇paper里面,作者提出的框架十分简洁优雅(好用的算法总是简洁优雅的)。相比以往算法的大量专家知识,手工复杂的loss。这篇paper非常粗暴,使用CGAN处理了一系列的转换问题。

图像翻译三部曲:pix2pix, pix2pixHD, vid2vid_生成器_02

图像翻译三部曲:pix2pix, pix2pixHD, vid2vid_生成器_03


如何解决模糊呢?

这里作者想了一个办法,即加入GAN的Loss去惩罚模型。GAN相比于传统生成式模型可以较好的生成高分辨率图片。思路也很简单,在上述直观想法的基础上加入一个判别器,判断输入图片是否是真实样本。模型示意图如下:

图像翻译三部曲:pix2pix, pix2pixHD, vid2vid_3d_04


上图模型和CGAN有所不同,但它是一个CGAN,只不过输入只有一个,这个输入就是条件信息。原始的CGAN需要输入随机噪声,以及条件。这里之所有没有输入噪声信息,是因为在实际实验中,如果输入噪声和条件,噪声往往被淹没在条件C当中,所以这里直接省去了。

其他tricks

从上面两点可以得到最终的Loss由两部分构成:

  • 输出和标签信息的L1 Loss。
  • GAN Loss - 测试也使用Dropout,以使输出多样化

图像翻译三部曲:pix2pix, pix2pixHD, vid2vid_光流_05


采用L1 Loss而不是L2 Loss的理由很简单,L1 Loss相比于L2 Loss保边缘(L2 Loss基于高斯先验,L1 Loss基于拉普拉斯先验)。

GAN Loss为LSGAN的最小二乘Loss,并使用PatchGAN(进一步保证生成图像的清晰度)。PatchGAN将图像换分成很多个Patch,并对每一个Patch使用判别器进行判别(实际代码实现有更取巧的办法,实际是这样实现的:假设输入一张256x256的图像到判别器,输出的是一个4x4的confidence map,每一个像素值代表当前patch是真实图像的置信度。感受野就是当前的图像patch),将所有Patch的Loss求平均作为最终的Loss。


2、pix2pixHD

论文:pix2pixHD 代码:GitHub

这篇paper作为pix2pix的改进版本,如其名字一样,主要是可以产生高分辨率的图像。具体来说,作者的贡献主要在以下两个方面:

  • 使用多尺度的生成器以及判别器等方式从而生成高分辨率图像。
  • 使用了一种非常巧妙的方式,实现了对于同一个输入,产生不同的输出。并且实现了交互式的语义编辑方式,这一点不同于pix2pix中使用dropout保证输出的多样性。

高分辨率图像生成

为了生成高分辨率图像,作者主要从三个层面做了改进:

  • 模型结构
  • Loss设计
  • 使用Instance-map的图像进行训练。

模型结构


图像翻译三部曲:pix2pix, pix2pixHD, vid2vid_生成器_06

生成器由两部分组成,G1和G2,其中G2又被割裂成两个部分。G1和pix2pix的生成器没有差别,就是一个end2end的U-Net结构。G2的左半部分提取特征,并和G1的输出层的前一层特征进行相加融合信息,把融合后的信息送入G2的后半部分输出高分辨率图像。

判别器使用多尺度判别器,在三个不同的尺度上进行判别并对结果取平均。判别的三个尺度为:原图,原图的1/2降采样,原图的1/4降采样(实际做法为在不同尺度的特征图上进行判别,而非对原图进行降采样)。显然,越粗糙的尺度感受野越大,越关注全局一致性。

生成器和判别器均使用多尺度结构实现高分辨率重建,思路和PGGAN类似,但实际做法差别比较大。

Loss设计

这里的Loss由三部分组成:

  • GAN loss:和pix2pix一样,使用PatchGAN。
  • Feature matching loss:将生成的样本和Ground truth分别送入判别器提取特征,然后对特征做Element-wise loss
  • Content loss:将生成的样本和Ground truth分别送入VGG16提取特征,然后对特征做Element-wise loss

图像翻译三部曲:pix2pix, pix2pixHD, vid2vid_3d_07


使用Feature matching loss和Content loss计算特征的loss,而不是计算生成样本和Ground truth的MSE,主要在于MSE会造成生成的图像过度平滑,缺乏细节。Feature matching loss和Content loss只保证内容一致,细节则由GAN去学习。

使用Instance-map的图像进行训练

pix2pix采用语义分割的结果进行训练,可是语义分割结果没有对同类物体进行区分,导致多个同一类物体排列在一起的时候出现模糊,这在街景图中尤为常见。在这里,作者使用个体分割(Instance-level segmention)的结果来进行训练,因为个体分割的结果提供了同一类物体的边界信息。具体做法如下:

  1. 根据个体分割的结果求出Boundary map
  2. 将Boundary map与输入的语义标签concatnate到一起作为输入 Boundary map求法很简单,直接遍历每一个像素,判断其4邻域像素所属语义类别信息,如果有不同,则置为1。下面是一个示例:

图像翻译三部曲:pix2pix, pix2pixHD, vid2vid_3d_08


语义编辑

不同于pix2pix实现生成多样性的方法(使用Dropout),这里采用了一个非常巧妙的办法,即学习一个条件(Condition)作为条件GAN的输入,不同的输入条件就得到了不同的输出,从而实现了多样化的输出,而且还是可编辑的。具体做法如下:

图像翻译三部曲:pix2pix, pix2pixHD, vid2vid_3d_09

  1. 首先训练一个编码器
  2. 利用编码器提取原始图片的特征,然后根据Labels信息进行Average pooling,得到特征(上图的Features)。这个Features的每一类像素的值都代表了这类标签的信息。
  3. 如果输入图像有足够的多,那么Features的每一类像素的值就代表了这类物体的先验分布。对所有输入的训练图像通过编码器提取特征,然后进行K-means聚类,得到K个聚类中心,以K个聚类中心代表不同的颜色,纹理等信息。
  4. 实际生成图像时,除了输入语义标签信息,还要从K个聚类中心随机选择一个,即选择一个颜色/纹理风格

这个方法总的来说非常巧妙,通过学习数据的隐变量达到控制图像颜色纹理风格信息。

总结

作者主要的贡献在于:

  • 提出了生成高分辨率图像的多尺度网络结构,包括生成器,判别器
  • 提出了Feature loss和VGG loss提升图像的分辨率 - 通过学习隐变量达到控制图像颜色,纹理风格信息
  • 通过Boundary map提升重叠物体的清晰度

可以看出,这篇paper除了第三点,都是针对性的解决高分辨率图像生成的问题的。可是本篇工作只是生成了高分辨率的图像,那对于视频呢?接下来会介绍Vid2Vid,这篇paper站在pix2pixHD的基础上,继续做了许多拓展,特别是针对视频前后帧不一致的问题做了许多优化。


3、vid2vid

论文:Vid2Vid 代码:项目主页

Vid2Vid作为pix2pix, pix2pixHD的改进版本,重点解决了视频到视频转换过程中的前后帧不一致性问题。

视频生成的难点

GAN在图像生成领域虽然研究十分广泛,然而在视频生成领域却还存在许多问题。主要原因在于生成的视频很难保证前后帧的一致性,容易出现抖动。对于视频问题,最直观的想法便是加入前后帧的光流信息作为约束,Vid2Vid也不例外。由于Vid2Vid建立在pix2pixHD基础之上,加入时序约束。因此可以实现高分辨率视频生成

作者给出的方案

  • 生成器加入光流约束
  • 判别器加入光流信息
  • 对前景、背景分别建模

3.1 对生成器加入光流约束

符号定义:

图像翻译三部曲:pix2pix, pix2pixHD, vid2vid_生成器_10

图像翻译三部曲:pix2pix, pix2pixHD, vid2vid_3d_11


图像翻译三部曲:pix2pix, pix2pixHD, vid2vid_3d_12