3.2 二维小波变换的 Matlab

实现

二维小波变换的函数

-------------------------------------------------

函数名 函数功能

---------------------------------------------------

dwt2 二维离散小波变换

wavedec2 二维信号的多层小波分解

idwt2 二维离散小波反变换

waverec2 二维信号的多层小波重构

wrcoef2 由多层小波分解重构某一层的分解信号

upcoef2 由多层小波分解重构近似分量或细节分量

detcoef2 提取二维信号小波分解的细节分量

appcoef2 提取二维信号小波分解的近似分量

upwlev2 二维小波分解的单层重构

dwtpet2 二维周期小波变换

idwtper2 二维周期小波反变换

-------------------------------------------------------------

(1) wcodemat 函数

功能:对数据矩阵进行伪彩色编码

格式:Y=wcodemat(X,NB,OPT,ABSOL)

Y=wcodemat(X,NB,OPT)

Y=wcodemat(X,NB)

Y=wcodemat(X)

说明:Y=wcodemat(X,NB,OPT,ABSOL)

返回数据矩阵 X 的编码矩阵 Y

;NB 伪编码的最大值,即编码范围为

0~NB,缺省值

NB=16;

OPT

指定了编码的方式(缺省值为 'mat'),即:

OPT='row' ,按行编码

OPT='col' ,按列编码

OPT='mat' ,按整个矩阵编码

ABSOL 是函数的控制参数(缺省值为 '1'),即:

ABSOL=0 时,返回编码矩阵

ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)

(2) dwt2 函数

功能:二维离散小波变换

格式:[cA,cH,cV,cD]=dwt2(X,'wname')

[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)

说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数 'wname' 对二维信号 X

进行二维离散小波变幻;cA,cH,cV,cD

分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)

使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。

(3) wavedec2 函数

功能:二维信号的多层小波分解

格式:[C,S]=wavedec2(X,N,'wname')

[C,S]=wavedec2(X,N,Lo_D,Hi_D)

说明:[C,S]=wavedec2(X,N,'wname')

使用小波基函数 'wname' 对二维信号

X 进行 N

层分解;[C,S]=wavedec2(X,N,Lo_D,Hi_D)

使用指定的分解低通和高通滤波器 Lo_D 和

Hi_D 分解信号 X

(4) idwt2 函数

功能:二维离散小波反变换

格式:X=idwt2(cA,cH,cV,cD,'wname')

X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R)

X=idwt2(cA,cH,cV,cD,'wname',S)

X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S)

说明:X=idwt2(cA,cH,cV,cD,'wname')

由信号小波分解的近似信号 cA 和细节信号

cH、cH、cV、cD

经小波反变换重构原信号 X

;X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R) 使用指定的重构低通和高通滤波器

Lo_R 和 Hi_R

重构原信号 X ;X=idwt2(cA,cH,cV,cD,'wname',S)

和 X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S)

返回中心附近的 S 个数据点。

(5) waverec2 函数

说明:二维信号的多层小波重构

格式:X=waverec2(C,S,'wname')

X=waverec2(C,S,Lo_R,Hi_R)

说明:X=waverec2(C,S,'wname')

由多层二维小波分解的结果

C、S 重构原始信号

X ,'wname'

为使用的小波基函数;X=waverec2(C,S,Lo_R,Hi_R)

使用重构低通和高通滤波器 Lo_R 和

Hi_R 重构原信号。