一、ArrayList的数据结构:
ArrayList的数据结构如下:
说明:通过查看源码可以知道ArrayList底层的数据结构是数组,数组元素的类型是Object类型,即可以存放所有类型的数据,所有对ArrayList类的实例的操作底层都是基于数组实现。
二、ArrayList源码分析:
1、ArrayList的继承关系:public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable
说明:ArrayList继承了AbstractList抽象父类,实现了List接口(规定List的操作规范)、RandomAccess(可随机访问)、Cloneable(可拷贝)、Serializable(可序列化)
2、ArrayList类的属性:
说明:类的属性中核心属性为elementData,类型是Object[],用于存放实际元素,并且标记为transient,意味着在序列化的时候,此此段不会被序列化。
public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
// 版本号
private static final long serialVersionUID = 8683452581122892189L;
// 缺省容量
private static final int DEFAULT_CAPACITY = 10;
// 空对象数组
private static final Object[] EMPTY_ELEMENTDATA = {};
// 缺省空对象数组
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
// 元素数组
transient Object[] elementData;
// 实际元素大小,默认为0
private int size;
// 最大数组容量
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
}
3、ArrayList类构造函数:
//指定elementData数组的大小,不允许初始化大小<0,否则抛出异常
public ArrayList(int initialCapacity) {
if (initialCapacity > 0) { // 初始容量大于0
this.elementData = new Object[initialCapacity]; // 初始化元素数组
} else if (initialCapacity == 0) { // 初始容量为0
this.elementData = EMPTY_ELEMENTDATA; // 为空对象数组
} else { // 初始容量小于0,抛出异常
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
}
}
//ArrayList()构造函数:
//当为指定初始大小时,会给elementData赋值为空集合
public ArrayList() {
// 无参构造函数,设置元素数组为空
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}
//ArrayList(Collection<?extends E>)构造函数
//当传递的参数为集合类型时,会把集合类型转化为数组类型,并赋值给elementData
public ArrayList(Collection<? extends E> c) { // 集合参数构造函数
elementData = c.toArray(); // 转化为数组
if ((size = elementData.length) != 0) { // 参数为非空集合
if (elementData.getClass() != Object[].class) // 是否成功转化为Object类型数组
elementData = Arrays.copyOf(elementData, size, Object[].class); // 不为Object数组的话就进行复制
} else { // 集合大小为空,则设置元素数组为空
this.elementData = EMPTY_ELEMENTDATA;
}
}
4、核心方法分析:
4.1、add()方法:
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
可以看到,add方法里面调用了ensureCapacityInternal()方法,该方法可以理解为为确保elementData数组有合适的大小,其具体实现如下:
private void ensureCapacityInternal(int minCapacity) {
ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
}
private static int calculateCapacity(Object[] elementData, int minCapacity) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {//判断该数组是否是空数组
return Math.max(DEFAULT_CAPACITY, minCapacity);//取较大值
}
return minCapacity;
}
在ensureCapacityInternal()方法中,调用了 ensureExplicitCapacity()方法,该方法也是为了确保数组有合适的大小,具体实现如下:
而ensureExplicitCapacity()方法中,又调用了grow()方法,具体实现如下:
private void grow(int minCapacity) {
int oldCapacity = elementData.length; // 旧容量
int newCapacity = oldCapacity + (oldCapacity >> 1); // 新容量为旧容量的1.5倍,此处用了位运算提高效率
if (newCapacity - minCapacity < 0) // 新容量小于参数指定容量,修改新容量
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0) // 新容量大于最大容量
newCapacity = hugeCapacity(minCapacity); // 指定新容量
// 拷贝扩容
elementData = Arrays.copyOf(elementData, newCapacity);
}
总结:通过以上方法跟踪,我们可以发现add()方法最终调用了grow()方法,其他均为过程方法,grow()方法里面定义了数组元素的存储以及扩容方式。
4.2、set()方法:需要设置下标
public E set(int index, E element) {
// 检验索引是否合法
rangeCheck(index);
// 旧值
E oldValue = elementData(index);
// 赋新值
elementData[index] = element;
// 返回旧值
return oldValue;
}
4.3、indexOf()方法:
// 从首开始查找数组里面是否存在指定元素
public int indexOf(Object o) {
if (o == null) { // 查找的元素为空
for (int i = 0; i < size; i++) // 遍历数组,找到第一个为空的元素,返回下标
if (elementData[i]==null)
return i;
} else { // 查找的元素不为空
for (int i = 0; i < size; i++) // 遍历数组,找到第一个和指定元素相等的元素,返回下标
if (o.equals(elementData[i]))
return i;
}
// 没有找到,返回空
return -1;
}
说明:从头开始查找与指定元素相等的元素,可以查找null元素,即ArrayList中可以存null元素,与该方法对应的lastIndexOf()方法,表示从尾部元素开始查找。
4.4、get()方法:
E elementData(int index) {
return (E) elementData[index];
}
说明:get方法会坚持索引是否合法(只检查是否大于size,而没有检查是否小雨0),非法则抛出数组越界异常,值得注意的是,在get方法中通过调用elementData方法返回具体元素,
elementData方法实现如下:
E elementData(int index) {
return (E) elementData[index];
}
注意:返回的值都经过了向下转型(Object->E),这是应用程序设计中屏蔽的小细节
4.5、remove()方法:
public E remove(int index) {
// 检查索引是否合法
rangeCheck(index);
modCount++;
E oldValue = elementData(index);
// 需要移动的元素的个数=数组总长度-(该元素所在的位置索引+1)
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
// 赋值为空,有利于进行GC
elementData[--size] = null;
// 返回旧值
return oldValue;
}
说明:remove方法用于移除指定下标的元素,此时会把指定下标到数组末尾的元素向前移动一个单位,并且会把数组最后一个元素设置为null,这样做是为了方便之后整个数组不使用时,会被GC,这是个小技巧。
三、总结:
ArrayList和LinkedList的区别:
1、ArrayList是实现了基于动态数组的数据结构,LinkedList基于链表的数据结构。
2、对于随机访问get和set,ArrayList优于LinkedList,因为LinkedList要移动指针。
3、对于新增和删除操作add和remove(不是在尾部添加删除),LinkedList比较占优势,因为ArrayList要移动数据。
ArrayList和Vector的区别:
1、Vector和ArrayList几乎是完全相同的,唯一的区别在于Vector是同步类(synchronized),属于强同步类。因此开销就比ArrayList要大,访问要慢。正常情况下,大多数的Java程序员使用ArrayList而不是Vector,因为同步完全可以由程序员自己来控制。
2、 Vector每次扩容请求其大小的2倍空间,而ArrayList是1.5倍。
3、Vector还有一个子类Stack.
总结
ArrayList总体来说比较简单,不过ArrayList还有以下一些特点:
- ArrayList基于数组方式实现,无容量的限制(会扩容)
- 添加元素时可能要扩容(所以最好预判一下),删除元素时不会减少容量(若希望减少容量,trimToSize()),删除元素时,将删除掉的位置元素置为null,下次gc就会回收这些元素所占的内存空间。
- 线程不安全,会出现fall-fail。下一篇文章会详细讲,
- add(int index, E element):添加元素到数组中指定位置的时候,需要将该位置及其后边所有的元素都整块向后复制一位
- get(int index):获取指定位置上的元素时,可以通过索引直接获取(O(1))
- remove(Object o)需要遍历数组
public boolean remove(Object o) {
if (o == null) {
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
}
- remove(int index)不需要遍历数组,只需判断index是否符合条件即可,效率比remove(Object o)高
- contains(E)需要遍历数组
public boolean contains(Object o) {
return indexOf(o) >= 0;
}
public int indexOf(Object o) {
if (o == null) {
for (int i = 0; i < size; i++)
if (elementData[i]==null)
return i;
} else {
for (int i = 0; i < size; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
- 使用iterator遍历可能会引发多线程异常