第 10 章 Mycat 分片规则

10.1 分片规则概述

在数据切分处理中,特别是水平切分中,中间件最终要的两个处理过程就是数据的切分、数据的聚合。选择合适的切分规则,至关重要,因为它决定了后续数据聚合的难易程度,甚至可以避免跨库的数据聚合处理。

前面讲了数据切分中重要的几条原则,其中有几条是数据冗余,表分组(Table Group),这都是业务上规避跨库join的很好的方式,但不是所有的业务场景都适合这样的规则,因此本章将讲述如何选择合适的切分规则。

10.2 Mycat 全局表

如果你的业务中有些数据类似于数据字典,比如配置文件的配置,常用业务的配置或者数据量不大很少变动的表,这些表往往不是特别大,而且大部分的业务场景都会用到,那么这种表适合于 Mycat 全局表,无须对数据进行切分,只要在所有的分片上保存一份数据即可,Mycat 在 Join 操作中,业务表与全局表进行 Join 聚合会优先选择相同分片内的全局表 join,避免跨库 Join,在进行数据插入操作时,mycat 将把数据分发到全局表对应的所有分片执行,在进行数据读取时候将会随机获取一个节点读取数据。

目前 Mycat 没有做全局表的数据一致性检查,后续版本 1.4 之后可能会提供全局表一致性检查,检查每个分片的数据一致性。

全局表的配置如下

<table name="t_area" primaryKey="id" type="global" dataNode="dn1,dn2" />

10.3 ER 分片表

有一类业务,例如订单(order)跟订单明细(order_detail),明细表会依赖于订单,也就是说会存在表的主从关系,这类似业务的切分可以抽象出合适的切分规则,比如根据用户 ID 切分,其他相关的表都依赖于用户 ID,再或者根据订单 ID 切分,总之部分业务总会可以抽象出父子关系的表。这类表适用于 ER 分片表,子表的记录与所关联的父表记录存放在同一个数据分片上,避免数据 Join 跨库操作。

以 order 与 order_detail 例子为例,schema.xml 中定义如下的分片配置,order,order_detail 根据 order_id进行数据切分,保证相同 order_id 的数据分到同一个分片上,在进行数据插入操作时,Mycat 会获取 order 所在的分片,然后将 order_detail 也插入到 order 所在的分片。

<table name="order" dataNode="dn$1-32" rule="mod-long">
<childTable name="order_detail" primaryKey="id" joinKey="order_id" parentKey="order_id" />
</table>

10.4 多对多关联

有一类业务场景是 “主表 A+关系表+主表 B”,举例来说就是商户会员+订单+商户,对应这类业务,如何切分?

从会员的角度,如果需要查询会员购买的订单,那按照会员进行切分即可,但是如果要查询商户当天售出的订单,那又需要按照商户做切分,可是如果既要按照会员又要按照商户切分,几乎是无法实现,这类业务如何选择切分规则非常难。目前还暂时无法很好支持这种模式下的 3 个表之间的关联。目前总的原则是需要从业务角度来看,关系表更偏向哪个表,即“A 的关系”还是“B 的关系”,来决定关系表跟从那个方向存储,未来 Mycat版本中将考虑将中间表进行双向复制,以实现从 A-关系表 以及 B-关系表的双向关联查询如下图所示:
快速学习-Mycat分片规则_主键

10.4.1 主键分片 vs 非主键分片

当你没人任何字段可以作为分片字段的时候,主键分片就是唯一选择,其优点是按照主键的查询最快,当采用自动增长的序列号作为主键时,还能比较均匀的将数据分片在不同的节点上。

若有某个合适的业务字段比较合适作为分片字段,则建议采用此业务字段分片,选择分片字段的条件如下:

  • 尽可能的比较均匀分布数据到各个节点上;
  • 该业务字段是最频繁的或者最重要的查询条件。
    常见的除了主键之外的其他可能分片字段有“订单创建时间”, “店铺类别”或“所在省”等。当你找到某个合适的业务字段作为分片字段以后,不必纠结于“牺牲了按主键查询记录的性能”,因为在这种情况下,MyCAT 提供了“主键到分片”的内存缓存机制,热点数据按照主键查询,丝毫不损失性能。
<table name="t_user" primaryKey="user_id" dataNode="dn$1-32" rule="mod-long">
<childTable name="t_user_detail" primaryKey="id" joinKey="user_id" parentKey="user_id" />
</table>

对于非主键分片的 table,填写属性 primaryKey,此时 MyCAT 会将你根据主键查询的 SQL 语句的第一次执行结果进行分析,确定该 Table 的某个主键在什么分片上,并进行主键到分片 ID 的缓存。第二次或后续查询mycat 会优先从缓存中查询是否有 id–>node 即主键到分片的映射,如果有直接查询,通过此种方法提高了非主键分片的查询性能。

本节主要讲了如何去分片,如何选择合适分片的规则,总之尽量规避跨库 Join 是一条最重要的原则,下一节将介绍 Mycat 目前已有的分片规则,每种规则都有特定的场景,分析每种规则去选择合适的应用到项目中。

10.5 Mycat 常用的分片规则

10.5.1 分片枚举

通过在配置文件中配置可能的枚举 id,自己配置分片,本规则适用于特定的场景,比如有些业务需要按照省份或区县来做保存,而全国省份区县固定的,这类业务使用本条规则,配置如下:

<tableRule name="sharding-by-intfile">
<rule>
<columns>user_id</columns>
<algorithm>hash-int</algorithm>
</rule>
</tableRule>
<function name="hash-int" class="io.mycat.route.function.PartitionByFileMap">
<property name="mapFile">partition-hash-int.txt</property>
<property name="type">0</property>
<property name="defaultNode">0</property>
</function>
partition-hash-int.txt 配置:
10000=0
10010=1
DEFAULT_NODE=1

上面 columns 标识将要分片的表字段,algorithm 分片函数,
其中分片函数配置中,mapFile 标识配置文件名称,type 默认值为 0,0 表示 Integer,非零表示 String,所有的节点配置都是从 0 开始,及 0 代表节点 1

/**
* defaultNode 默认节点:小于 0 表示不设置默认节点,大于等于 0 表示设置默认节点
* 默认节点的作用:枚举分片时,如果碰到不识别的枚举值,就让它路由到默认节点
* 如果不配置默认节点(defaultNode 值小于 0 表示不配置默认节点),碰到
* 不识别的枚举值就会报错,
* like this:can’t find datanode for sharding column:column_nameval:ffffffff
*/

10.5.2 固定分片 hash 算法

本条规则类似于十进制的求模运算,区别在于是二进制的操作,是取 id 的二进制低 10 位,即 id 二进制&1111111111。

此算法的优点在于如果按照 10 进制取模运算,在连续插入 1-10 时候 1-10 会被分到 1-10 个分片,增大了插入的事务控制难度,而此算法根据二进制则可能会分到连续的分片,减少插入事务事务控制难度。

<tableRule name="rule1">
<rule>
<columns>user_id</columns>
<algorithm>func1</algorithm>
</rule>
</tableRule>
<function name="func1" class="io.mycat.route.function.PartitionByLong">
<property name="partitionCount">2,1</property>
<property name="partitionLength">256,512</property>
</function>

配置说明:
上面 columns 标识将要分片的表字段,algorithm 分片函数,
partitionCount 分片个数列表,partitionLength 分片范围列表
分区长度:默认为最大 2^n=1024 ,即最大支持 1024 分区
约 束

:
count,length 两个数组的长度必须是一致的。
1024 = sum((count[i]*length[i])). count 和 length 两个向量的点积恒等于 1024
用法例子:
本例的分区策略:希望将数据水平分成 3 份,前两份各占 25%,第三份占 50%。(故本例非均匀分区)

// |<———————1024———————————>|
// |<—-256—>|<—-256—>|<———-512————->|
// | partition0 | partition1 | partition2 |
// | 共 2 份,故 count[0]=2 | 共 1 份,故 count[1]=1 | 
int[] count = new int[] { 2, 1 };
int[] length = new int[] { 256, 512 };
PartitionUtil pu = new PartitionUtil(count, length);

// 下面代码演示分别以 offerId 字段或 memberId 字段根据上述分区策略拆分的分配结果
int DEFAULT_STR_HEAD_LEN = 8; // cobar 默认会配置为此值
long offerId = 12345;
String memberId = "qiushuo";
// 若根据 offerId 分配,partNo1 将等于 0,即按照上述分区策略,offerId 为 12345 时将会被分配
到 partition0 中
int partNo1 = pu.partition(offerId);
// 若根据 memberId 分配,partNo2 将等于 2,即按照上述分区策略,memberId 为 qiushuo 时将会被
分到 partition2 中
int partNo2 = pu.partition(memberId, 0, DEFAULT_STR_HEAD_LEN);

如果需要平均分配设置:平均分为 4 分片,partitionCount*partitionLength=1024

<function name="func1" class="io.mycat.route.function.PartitionByLong">
<property name="partitionCount">4</property>
<property name="partitionLength">256</property>
</function>

10.5.3 范围约定

此分片适用于,提前规划好分片字段某个范围属于哪个分片,

start <= range <= end.
range start-end ,data node index 
K=1000,M=10000.
<tableRule name="auto-sharding-long">
<rule>
<columns>user_id</columns>
<algorithm>rang-long</algorithm>
</rule>
</tableRule>
<function name="rang-long" class="io.mycat.route.function.AutoPartitionByLong">
<property name="mapFile">autopartition-long.txt</property>
<property name="defaultNode">0</property>
</function>
配置说明:

上面 columns 标识将要分片的表字段,algorithm 分片函数,
rang-long 函数中 mapFile 代表配置文件路径
defaultNode 超过范围后的默认节点。
所有的节点配置都是从 0 开始,及 0 代表节点 1,此配置非常简单,即预先制定可能的 id 范围到某个分片

0-500M=0
500M-1000M=1
1000M-1500M=2
或
0-10000000=0
10000001-20000000=1

10.5.4 取 模

此规则为对分片字段求摸运算。

<tableRule name="mod-long">
<rule>
<columns>user_id</columns>
<algorithm>mod-long</algorithm>
</rule>
</tableRule>
<function name="mod-long" class="io.mycat.route.function.PartitionByMod">
<!-- how many data nodes -->
<property name="count">3</property>
</function>

配置说明:

上面 columns 标识将要分片的表字段,algorithm 分片函数,此种配置非常明确即根据 id 进行十进制求模预算,相比固定分片 hash,此种在批量插入时可能存在批量插入单事务插入多数据分片,增大事务一致性难度。

10.5.5按日期(天)分片

此规则为按天分片。

<tableRule name="sharding-by-date">
<rule>
<columns>create_time</columns>
<algorithm>sharding-by-date</algorithm>
</rule>
</tableRule>
<function name="sharding-by-date" class="io.mycat.route.function.PartitionByDate">
<property name="dateFormat">yyyy-MM-dd</property>
<property name="sBeginDate">2014-01-01</property>
<property name="sEndDate">2014-01-02</property>
<property name="sPartionDay">10</property>
</function>

配置说明:

columns :标识将要分片的表字段
algorithm :分片函数
dateFormat :日期格式
sBeginDate :开始日期
sEndDate:结束日期
sPartionDay :分区天数,即默认从开始日期算起,分隔 10 天一个分区

如果配置了 sEndDate 则代表数据达到了这个日期的分片后后循环从开始分片插入。

Assert.assertEquals(true, 0 == partition.calculate(“2014-01-01”)); 
Assert.assertEquals(true, 0 == partition.calculate(“2014-01-10”)); 
Assert.assertEquals(true, 1 == partition.calculate(“2014-01-11”)); 
Assert.assertEquals(true, 12 == partition.calculate(“2014-05-01”));

10.5.6 取模范围约束

此种规则是取模运算与范围约束的结合,主要为了后续数据迁移做准备,即可以自主决定取模后数据的节点分布。

<tableRule name="sharding-by-pattern">
<rule>
<columns>user_id</columns>
<algorithm>sharding-by-pattern</algorithm>
</rule>
</tableRule>
<function name="sharding-by-pattern" class="io.mycat.route.function.PartitionByPattern"
<property name="patternValue">256</property>
<property name="defaultNode">2</property>
<property name="mapFile">partition-pattern.txt</property>
</function>

partition-pattern.txt

partition-pattern.txt
# id partition range start-end ,data node index
###### first host configuration 
1-32=0
33-64=1
65-96=2
97-128=3
######## second host configuration 
129-160=4
161-192=5
193-224=6
225-256=7
0-0=7

配置说明:
上面 columns 标识将要分片的表字段,algorithm 分片函数,patternValue 即求模基数,defaoultNode 默认节点,如果配置了默认,则不会按照求模运算mapFile 配置文件路径

配置文件中,1-32 即代表 id%256 后分布的范围,如果在 1-32 则在分区 1,其他类推,如果 id 非数据,则会分配在

defaoultNode 默认节点
String idVal = “0”;
Assert.assertEquals(true, 7 == autoPartition.calculate(idVal)); 
idVal = “45a”;
Assert.assertEquals(true, 2 == autoPartition.calculate(idVal));

10.5.7 截取数字做 hash 求模范围约束

此种规则类似于取模范围约束,此规则支持数据符号字母取模。

<tableRule name="sharding-by-prefixpattern">
<rule>
<columns>user_id</columns>
<algorithm>sharding-by-prefixpattern</algorithm>
</rule>
</tableRule>
<function name="sharding-by-pattern" 
class="io.mycat.route.function.PartitionByPrefixPattern">
<property name="patternValue">256</property>
<property name="prefixLength">5</property>
<property name="mapFile">partition-pattern.txt</property>
</function>

partition-pattern.txt

partition-pattern.txt
# range start-end ,data node index
# ASCII
# 8-57=0-9 阿拉伯数字
# 64、65-90=@、A-Z
# 97-122=a-z
###### first host configuration 
1-4=0
5-8=1
9-12=2
13-16=3
###### second host configuration 
17-20=4
21-24=5
25-28=6
29-32=7
0-0=7

配置说明:
上面 columns 标识将要分片的表字段,algorithm 分片函数,patternValue 即求模基数,prefixLength ASCII 截取的位数mapFile 配置文件路径

配置文件中,1-32 即代表 id%256 后分布的范围,如果在 1-32 则在分区 1,其他类推此种方式类似方式 6 只不过采取的是将列种获取前 prefixLength 位列所有 ASCII 码的和进行求模

sum%patternValue ,获取的值,在范围内的分片数,
String idVal=“gf89f9a”;
Assert.assertEquals(true, 0==autoPartition.calculate(idVal));
idVal=“8df99a”;
Assert.assertEquals(true, 4==autoPartition.calculate(idVal)); 
idVal=“8dhdf99a”;
Assert.assertEquals(true, 3==autoPartition.calculate(idVal));

10.5.8 应用指定

此规则是在运行阶段有应用自主决定路由到那个分片。

<tableRule name="sharding-by-substring">
<rule>
<columns>user_id</columns>
<algorithm>sharding-by-substring</algorithm>
</rule>
</tableRule>
<function name="sharding-by-substring" 
class="io.mycat.route.function.PartitionDirectBySubString">
<property name="startIndex">0</property><!-- zero-based -->
<property name="size">2</property>
<property name="partitionCount">8</property>
<property name="defaultPartition">0</property>
</function>

配置说明:

上面 columns 标识将要分片的表字段,algorithm 分片函数此方法为直接根据字符子串(必须是数字)计算分区号(由应用传递参数,显式指定分区号)。

例如 id=05-100000002在此配置中代表根据 id 中从 startIndex=0,开始,截取 siz=2 位数字即 05,05 就是获取的分区,如果没传默认分配到 defaultPartition

10.5.9 截取数字 hash 解析

此规则是截取字符串中的 int 数值 hash 分片。

<tableRule name="sharding-by-stringhash">
<rule>
<columns>user_id</columns>
<algorithm>sharding-by-stringhash</algorithm>
</rule>
</tableRule>
<function name="sharding-by-stringhash" 
class="io.mycat.route.function.PartitionByString">
<property name="partitionLength">512</property><!-- zero-based -->
<property name="partitionCount">2</property>
<property name="hashSlice">0:2</property>
</function>

配置说明:
上面 columns 标识将要分片的表字段,algorithm 分片函数
函数中 partitionLength 代表字符串 hash 求模基数,

partitionCount 分区数,
hashSlice hash 预算位,即根据子字符串中 int 值 hash 运算
hashSlice : 0 means str.length(), -1 means str.length()-1
/**
* “2” -> (0,2)
* “1:2” -> (1,2)
* “1:” -> (1,0)
* “-1:” -> (-1,0)
* * “:-1” -> (0,-1)
* “:” -> (0,0)
*/
例子:
String idVal=null; 
rule.setPartitionLength("512"); 
rule.setPartitionCount("2"); 
rule.init(); 
rule.setHashSlice("0:2");
// idVal = "0";
// Assert.assertEquals(true, 0 == rule.calculate(idVal));
// idVal = "45a";
// Assert.assertEquals(true, 1 == rule.calculate(idVal));
//last 4
rule = new PartitionByString(); 
rule.setPartitionLength("512"); 
rule.setPartitionCount("2"); 
rule.init();
//last 4 characters 
rule.setHashSlice("-4:0"); 
idVal = "aaaabbb0000";
Assert.assertEquals(true, 0 == rule.calculate(idVal)); 
idVal = "aaaabbb2359";
Assert.assertEquals(true, 0 == rule.calculate(idVal));

10.5.10 一致性 hash

一致性 hash 预算有效解决了分布式数据的扩容问题。

<tableRule name="sharding-by-murmur">
<rule>
<columns>user_id</columns>
<algorithm>murmur</algorithm>
</rule>
</tableRule>
<function name="murmur" class="io.mycat.route.function.PartitionByMurmurHash">
<property name="seed">0</property><!-- 默认是 0-->
<property name="count">2</property><!-- 要分片的数据库节点数量,必须指定,否则没法分片-->
<property name="virtualBucketTimes">160</property><!-- 一个实际的数据库节点被映射为这么多虚拟
节点,默认是 160 倍,也就是虚拟节点数是物理节点数的 160 倍-->
<!--
<property name="weightMapFile">weightMapFile</property>
节点的权重,没有指定权重的节点默认是 1。以 properties 文件的格式填写,以从 0 开始到 count-1 的整数值也就
是节点索引为 key,以节点权重值为值。所有权重值必须是正整数,否则以 1 代替 -->
<!--
<property name="bucketMapPath">/etc/mycat/bucketMapPath</property>
用于测试时观察各物理节点与虚拟节点的分布情况,如果指定了这个属性,会把虚拟节点的 murmur hash 值与物理节
点的映射按行输出到这个文件,没有默认值,如果不指定,就不会输出任何东西 -->
</function>

10.5.11 按单月小时拆分

此规则是单月内按照小时拆分,最小粒度是小时,可以一天最多 24 个分片,最少 1 个分片,一个月完后下月从头开始循环。

每个月月尾,需要手工清理数据。

<tableRule name="sharding-by-hour">
<rule>
<columns>create_time</columns>
<algorithm>sharding-by-hour</algorithm>
</rule>
</tableRule>
<function name="sharding-by-hour" class="io.mycat.route.function.LatestMonthPartion">
<property name="splitOneDay">24</property>
</function>

配置说明:
columns: 拆分字段,字符串类型(yyyymmddHH)
splitOneDay : 一天切分的分片数

LatestMonthPartion partion = new LatestMonthPartion(); 
partion.setSplitOneDay(24);
Integer val = partion.calculate("2015020100"); 
assertTrue(val == 0);
val = partion.calculate("2015020216"); 
assertTrue(val == 40);
val = partion.calculate("2015022823"); 
assertTrue(val == 27 * 24 + 23);
Integer[] span = partion.calculateRange("2015020100", "2015022823"); 
assertTrue(span.length == 27 * 24 + 23 + 1);
assertTrue(span[0] == 0 && span[span.length - 1] == 27 * 24 + 23);
span = partion.calculateRange("2015020100", "2015020123"); 
assertTrue(span.length == 24);
assertTrue(span[0] == 0 && span[span.length - 1] == 23);

10.5.12 范围求模分片

先进行范围分片计算出分片组,组内再求模
优点可以避免扩容时的数据迁移,又可以一定程度上避免范围分片的热点问题综合了范围分片和求模分片的优点,分片组内使用求模可以保证组内数据比较均匀,分片组之间是范围分片可以兼顾范围查询。

最好事先规划好分片的数量,数据扩容时按分片组扩容,则原有分片组的数据不需要迁移。由于分片组内数据比较均匀,所以分片组内可以避免热点数据问题。

<tableRule name="auto-sharding-rang-mod">
<rule>
<columns>id</columns>
<algorithm>rang-mod</algorithm>
</rule>
</tableRule>
<function name="rang-mod"
class="io.mycat.route.function.PartitionByRangeMod">
<property name="mapFile">partition-range-mod.txt</property>
<property name="defaultNode">21</property>
</function>

配置说明:
上面 columns 标识将要分片的表字段,algorithm 分片函数,

rang-mod 函数中 mapFile 代表配置文件路径
defaultNode 超过范围后的默认节点顺序号,节点从 0 开始。
partition-range-mod.txt
range start-end ,data node group size

以下配置一个范围代表一个分片组,=号后面的数字代表该分片组所拥有的分片的数量。0-200M=5 //代表有 5 个分片节点

200M1-400M=1
400M1-600M=4
600M1-800M=4
800M1-1000M=6

10.5.13 日期范围 hash 分片

思想与范围求模一致,当由于日期在取模会有数据集中问题,所以改成 hash 方法。先根据日期分组,再根据时间 hash 使得短期内数据分布的更均匀优点可以避免扩容时的数据迁移,又可以一定程度上避免范围分片的热点问题要求日期格式尽量精确些,不然达不到局部均匀的目的

<tableRule name="rangeDateHash">
<rule>
<columns>col_date</columns>
<algorithm>range-date-hash</algorithm>
</rule>
</tableRule>
<function name="range-date-hash" 
class="io.mycat.route.function.PartitionByRangeDateHash">
<property name="sBeginDate">2014-01-01 00:00:00</property>
<property name="sPartionDay">3</property>
<property name="dateFormat">yyyy-MM-dd HH:mm:ss</property>
<property name="groupPartionSize">6</property>
</function>
sPartionDay 代表多少天分一个分片
groupPartionSize 代表分片组的大小

10.5.14 冷热数据分片

根据日期查询日志数据 冷热数据分布 ,最近 n 个月的到实时交易库查询,超过 n 个月的按照 m 天分片。

<tableRule name="sharding-by-date">
<rule>
<columns>create_time</columns>
<algorithm>sharding-by-hotdate</algorithm>
</rule>
</tableRule>
<function name="sharding-by-hotdate" class="io.mycat.route.function.PartitionByHotDate">
<property name="dateFormat">yyyy-MM-dd</property>
<property name="sLastDay">10</property>
<property name="sPartionDay">30</property>
</function>

10.5.15 自然月分片

按月份列分区 ,每个自然月一个分片,格式 between 操作解析的范例。

<tableRule name="sharding-by-month">
<rule>
<columns>create_time</columns>
<algorithm>sharding-by-month</algorithm>
</rule>
</tableRule>
<function name="sharding-by-month" class="io.mycat.route.function.PartitionByMonth">
<property name="dateFormat">yyyy-MM-dd</property>
<property name="sBeginDate">2014-01-01</property>
</function>

配置说明:
columns: 分片字段,字符串类型
dateFormat : 日期字符串格式
sBeginDate : 开始日期

PartitionByMonth partition = new PartitionByMonth(); 
partition.setDateFormat("yyyy-MM-dd"); 
partition.setsBeginDate("2014-01-01"); 
partition.init();
Assert.assertEquals(true, 0 == partition.calculate("2014-01-01")); 
Assert.assertEquals(true, 0 == partition.calculate("2014-01-10")); 
Assert.assertEquals(true, 0 == partition.calculate("2014-01-31")); 
Assert.assertEquals(true, 1 == partition.calculate("2014-02-01")); 
Assert.assertEquals(true, 1 == partition.calculate("2014-02-28")); 
Assert.assertEquals(true, 2 == partition.calculate("2014-03-1")); 
Assert.assertEquals(true, 11 == partition.calculate("2014-12-31")); 
Assert.assertEquals(true, 12 == partition.calculate("2015-01-31")); 
Assert.assertEquals(true, 23 == partition.calculate("2015-12-31"));

10.5.16 有状态分片算法

有状态分片算法与之前的分片算法不同,它是为数据自动迁移而设计的.直至 2018 年 7 月 24 日为止,现支持有状态算法的分片策略只有 crc32slot 欢迎大家提供更多有状态分片算法.一个有状态分片算法在使用过程中暂时存在两个操作一种是初始化,使用 mycat 创建配置带有有状态分片算法的 table 时(推介)或者第一次配置有状态分片算法的table 并启动 mycat 时,有状态分片算法会根据表的 dataNode 的数量划分分片范围并生成 ruledata 下的文件,这个分片范围规则就是’状态’,一个表对应一个状态,对应一个有状态分片算法实例,以及对应一个满足以下命名规则的文件:

算法名字_schema 名字_table 名字.properties文件里内容一般具有以下特征

8=91016-102399 
7=79639-91015 
6=68262-79638 
5=56885-68261 
4=45508-56884 
3=34131-45507 
2=22754-34130 
1=11377-22753 
0=0-11376

行数就是 table 的分片节点数量,每行的’数字-数字’就是分片算法生成的范围,这个范围与具体算法实现有关,一个分片节点可能存在多个范围,这些范围以逗号,分隔.一般来说,不要手动更改这个文件,应该使用算法生成范围,而且需要注意的是,物理库上的数据的分片字段的值一定要落在对应范围里.一种是添加操作,即数据扩容,具体参考第六章的 6.8 与 6.9添加节点,有状态分片算法根据节点的变化,重新分配范围规则,之后执行数据自动迁移任务.

10.5.17 crc32slot 分片算法

crc32solt 是有状态分片算法的实现之一,具体参考第六章 数据自动迁移方案设计

crc32(key)%102400=slot 

slot 按照范围均匀分布在 dataNode 上,针对每张表进行实例化,通过一个文件记录 slot 和节点映射关系,迁移过程中通过 zk 协调其中需要在分片表中增加 slot 字段,用以避免迁移时重新计算,只需要迁移对应 slot 数据即可分片最大个数为 102400 个,短期内应该够用,每分片一千万,总共可以支持一万亿数据

配置说明:

<table name="travelrecord" dataNode="dn1,dn2" rule="crc32slot" />

使用 mycat 配置完表后使用 mycat 创建表

USE TESTDB;
CREATE TABLE `travelrecord` 
( id xxxx
xxxxxxx
) ENGINE=INNODB DEFAULT CHARSET=utf8;

10.6 权限控制

10.6.1 远程连接配置(读、写权限)

目前 Mycat 对于中间件的连接控制并没有做太复杂的控制,目前只做了中间件逻辑库级别的读写权限控制。
配置说明:
配置中 name 是应用连接中间件逻辑库的用户名。

mycat 中 password 是应用连接中间件逻辑库的密码。
order 中是应用当前连接的逻辑库中所对应的逻辑表。schemas 中可以配置一个或多个。
true 中 readOnly 是应用连接中间件逻辑库所具有的权限。true 为只读,false 为读写都有,默认为 false。

10.7 多租户支持

单租户就是传统的给每个租户独立部署一套 web + db 。由于租户越来越多,整个 web 部分的机器和运维成本都非常高,因此需要改进到所有租户共享一套 web 的模式(db 部分暂不改变)。

基于此需求,我们对单租户的程序做了简单的改造实现 web 多租户共享。具体改造如下:

1.web 部分修改:

a.在用户登录时,在线程变量(ThreadLocal)中记录租户的 id
b.修改 jdbc 的实现:在提交 sql 时,从 ThreadLocal 中获取租户 id, 添加 sql 注释,把租户的 schema放到注释中。例如:/*!mycat : schema = test_01 */ sql ;

2.在 db 前面建立 proxy 层,代理所有 web 过来的数据库请求。proxy 层是用 mycat 实现的,web 提交的 sql 过来时在注释中指定 schema, proxy 层根据指定的 schema 转发 sql 请求。

3.Mycat 配置:

<user name="mycat">
<property name="password">mycat</property>
<property name="schemas">order</property>
<property name="readOnly">true</property>
</user>
<user name="mycat2">
<property name="password">mycat</property>
<property name="schemas">order</property>
</user>