一.考点归纳
参数估计的基本原理
1置信区间
(1)置信水平为95%的置信区间的含义:用某种方法构造的所有区间中有95%的区间包含总体参数的真值。(2)置信度愈高(即估计的可靠性愈高),则置信区间相应也愈宽(即估计准确性愈低)。
(3)置信区间的特点:置信区间受样本影响,具有随机性,总体参数的真值是固定的。一个特定的置信区间“总是包含”或“绝对不包含”参数的真值,不存在“以多大的概率包含总体参数”的问题。
2评价估计量的标准
(1)无偏性:估计量抽样分布的期望值等于被估计的总体参数,即E(θ)=θ。
(2)有效性:估计量的方差尽可能小。
(3)一致性:随着样本量的增大,估计量的值越来越接近被估计总体的参数。
一个总体参数的区间估计
二、课后习题及答案
1利用下面的信息,构建总体均值的置信区间。
(1)总体服从正态分布,且已知σ=500,n=15,x=8900,置信水平为95%。
(2)总体不服从正态分布,且已知σ=500,n=35,x=8900,置信水平为95%。
(3)总体不服从正态分布,σ未知,n=35,x=8900,s=500,置信水平为90%。
(4)总体不服从正态分布,σ未知,n=35,x=8900,s=500,置信水平为99%。
解:(1)由于总体服从正态分布,σ=500,n=15,x=8900,α=0.05,z0.05/2=1.96。所以总体均值μ的95%的置信区间为:
即(8646.97,9153.03)。
(2)已知总体不服从正态分布,但n=35为大样本,因此采用z统计量,总体均值μ的95%的置信区间为:
即(8734.35,9065.65)。
(3)已知总体不服从正态分布,σ未知,但由于n=35为大样本,因此可以采用z统计量,总体均值μ的90%的置信区间为:
即(8760.97,9039.03)。
(4)已知总体不服从正态分布,σ未知,但由于n=35为大样本,因此可以采用z统计量,总体均值μ的99%的置信区间为:
即(8681.95,9118.05)。
2某大学为了解学生每天上网的时间,在全校7500名学生中采取重复抽样方法随机抽取36人,调查他们每天上网的时间,得到表7-3的数据(单位:小时)。
求该校大学生平均上网时间的置信区间,置信水平分别为90%,95%和99%。
解:已知:n=36,当α为0.1,0.05,0.01时,相应的z值分别为:z0.1/2=1.645,z0.05/2=1.96,z0.01/2=2.58
根据样本数据计算得:
(1)由于n=36为大样本,所以平均上网时间的90%的置信区间为:
即(2.88,3.76)。
(2)平均上网时间的95%的置信区间为:
即(2.79,3.85)。
(3)平均上网时间的99%的置信区间为:
即(2.63,4.01)。3某企业生产的袋装食品采用自动打包机包装,每袋标准重量为100g,现从某天生产的一批产品中按重复抽样随机抽取50包进行检查,测得每包重量如表所示。
已知食品包重量从正态分布,要求:
(1)确定该种食品平均重量的95%的置信区间。
(2)如果规定食品重量低于100g属于不合格,确定该批食品合格率的95%的置信区间。
解:(1)已知:总体服从正态分布,但σ未知,n=50为大样本,α=0.05,z0.05/2=1.96。根据分组的样本数据计算得:x=(97×2+99×3+…+105×4)/50=101.32
该种食品平均重量的95%的置信区间为:
即(100.87,101.77)。
(2)根据样本数据可知,样本合格率为p=45/50=0.9。该种食品合格率的95%的置信区间为:
即(0.82,0.98)。
4假设总体服从正态分布,利用表7-5的数据构建总体均值μ的99%的置信区间。
解:已知:总体服从正态分布,但σ未知,n=25为小样本,α=0.01,t0.01/2(25-1)=2.797。根据样本数据计算得:x=16.128,s=0.871。则总体均值μ的99%的置信区间为:
即(15.64,16.62)。
5利用下面的样本数据构建总体比例π的置信区间。
(1)n=44,p=0.51,置信水平为99%。
(2)n=300,p=0.82,置信水平为95%。
(3)n=1150,p=0.48,置信水平为90%。
解:(1)已知:n=44,p=0.51,α=0.01,z0.01/2=2.58。总体比例π的99%的置信区间为:
即(0.32,0.70)。
(2)已知:n=300,p=0.82,α=0.05,z0.05/2=1.96。总体比例π的95%的置信区间为:
即(0.78,0.86)。
(3)已知:n=1150,p=0.48,α=0.1,z0.1/2=1.645。总体比例π的90%的置信区间为:
即(0.46,0.50)。
6在一项家电市场调查中,随机抽取了200个居民户,调查他们是否拥有某一品牌的电视机。其中拥有该品牌电视机的家庭占23%。求总体比例的置信区间,置信水平分别为90%和95%。解:已知:n=200,p=0.23,α为0.1和0.05时,相应的z0.1/2=1.645,z0.05/2=1.96。
(1)总体比例π的90%的置信区间为:
即(0.18,0.28)。
(2)总体比例π的95%的置信区间为:
即(0.17,0.29)。
7一位银行的管理人员想估计每位顾客在该银行的月平均存款额。他假设所有顾客月存款额的标准差为1000元,要求的估计误差在200元以内。置信水平为99%,应选取多大的样本?解:已知:σ=1000,估计误差E=200,α=0.01,z0.01/2=2.58。所以应抽取的样本量为:
所以应抽取167个样本。
8某居民小区共有居民500户,小区管理者准备采用一种新的供水设施,想了解居民是否赞成。采取重复抽样方法随机抽取了50户,其中有32户赞成,18户反对。
(1)求总体中赞成该项改革的户数比例的置信区间(α=0.05)。
(2)如果小区管理者预计赞成的比例能达到80%,估计误差不超过10%。应抽取多少户进行调查(α=0.05)?
解:(1)已知:n=50,p=32/50=0.64,α=0.05,z0.05/2=1.96。总体中赞成该项改革的户数比例的95%的置信区间为:
即(0.51,0.77)。
(2)已知:π=0.80,α=0.05,z0.05/2=1.96。应抽取的样本量为:
即应抽取的样本量为62户。
9根据下面的样本结果,计算总体标准差σ的90%的置信区间。
(1)x=21,s=2,n=50。
(2)x=1.3,s=0.02,n=15。
(3)x=167,s=31,n=22。
解:(1)已知:x=21,s=2,n=50,α=0.1,查表得:χ20.1/2(50-1)=66.3387,χ21-0.1/2(50-1)=33.9303。总体方差σ2的置信区间为:
即2.95≤σ2≤5.78。标准差的置信区间为:1.72≤σ≤2.40。
(2)已知:x=1.3,s=0.02,n=15,α=0.1,查表得:χ20.1/2(15-1)=23.6848,χ21-0.1/2(15-1)=6.5706。总体方差σ2的置信区间为:
标准差的置信区间为:0.015≤σ≤0.029。
(3)已知:x=167,s=31,n=22,α=0.1,查表得:χ20.1/2(22-1)=32.6706,χ21-0.1/2(22-1)=11.5913。总体方差σ2的置信区间为:
标准差的置信区间为:24.85≤σ≤41.73。10顾客到银行办理业务时往往需要等待一段时间,而等待时间的长短与许多因素有关。比如,银行业务员办理业务的速度,顾客等待排队的方式等。为此,某银行准备采取两种排队方式进行试验,第一种排队方式是:所有顾客都进入一个等待队列;第二种排队方式是:顾客在三个业务窗口处列队三排等待。为比较哪种排队方式使顾客等待的时间更短,银行各随机抽取10名顾客,他们在办理业务时所等待的时间(单位:分钟),如表所示。
要求:
(1)构建第一种排队方式等待时间标准差的95%的置信区间。
(2)构建第二种排队方式等待时间标准差的95%的置信区间。
(3)根据(1)和(2)的结果,你认为哪种排队方式更好?
解:(1)已知:n=10,α=0.05,查表得χ0.05/22(10-1)=19.0228,χ1-0.05/22(10-1)=2.7004。根据方式1的样本数据计算得:s2=0.2272。总体方差σ2的置信区间为:
标准差的置信区间为:0.33≤σ≤0.87。
(2)根据方式2的样本数据计算得:s2=3.3183。总体方差σ2的置信区间为:
标准差的置信区间为:1.25≤σ≤3.33。
(3)第一种排队方式更好,因为它的离散程度小于第二种排队方式。
11从两个正态总体中分别抽取两个独立的随机样本,它们的均值和标准差如表所示。
(1)设n1=n2=100,求(μ1-μ2)95%的置信区间。
(2)设n1=n2=10,σ12=σ22,求(μ1-μ2)95%的置信区间。
(3)设n1=n2=10,σ12≠σ22,求(μ1-μ2)95%的置信区间。
(4)设n1=10,n2=20,σ12=σ22,求(μ1-μ2)95%的置信区间。
(5)设n1=10,n2=20,σ12≠σ22,求(μ1-μ2)95%的置信区间。
解:(1)由于两个样本均为独立大样本,σ12和σ22未知。当α=0.05时,z0.05/2=1.96,则μ1-μ2的95%的置信区间为:
即(0.824,3.176)。
(2)由于两个样本均为来自正态总体的独立小样本,当σ12和σ22未知但σ12=σ22时,需要用两个样本的方差s12和s22和来估计。总体方差的合并估计量sp2为:
当α=0.05时,t0.05/2(10+10-2)=2.101,则μ1-μ2的95%的置信区间为:
即(-1.986,5.986)。
(3)由于两个样本均为来自正态总体的独立小样本,σ12和σ22未知且σ12≠σ22,n1=n2=n。当α=0.05时,t0.05/2(10+10-2)=2.101,则μ1-μ2的95%的置信区间为:
即(-1.986,5.986)。
(4)由于两个样本均为来自正态总体的独立小样本,σ12和σ22未知但σ12=σ22,n1≠n2。需要用两个样本的方差s12和s22来估计。总体方差的合并估计量sp2为:
当α=0.05时,t0.05/2(10+20-2)=2.048。因此,μ1-μ2的95%的置信区间为:
即(-1.431,5.431)。
(5)由于两个样本均为来自正态总体的独立小样本,σ12和σ22未知且σ12≠σ22,n1≠n2。因此,μ1-μ2的95%的置信区间为:
自由度的计算如下:
当α=0.05时,t0.05/2(20)=2.086。μ1-μ2的95%的置信区间为:
即(—1.364,5.364)。
12表7-8是由4对观察值组成的随机样本。
(1)计算A与B各对观察值之差,再利用得出的差值计算d和sd。
(2)设μ1和μ2分别为总体A和总体B的均值,构造μd=μ1-μ2的95%的置信区间。
解:(1)计算过程如表7-9所示。
d=7/4=1.75
(2)当α=0.05时,t0.05/2(4-1)=3.182。两个样本之差μd=μ1-μ2的95%的置信区间为:
即(-2.43,5.93)。13一家人才测评机构对随机抽取的10名小企业的经理人用两种方法进行自信心测试,得到的自信心测试分数如表7-10所示。
要求:构建两种方法平均自信心得分之差μd=μ1-μ2的95%的置信区间。
解:根据样本数据计算得:d=[(78-71)+(63-44)+…+(55-39)]/10=110/10=11
当α=0.05时,t0.05/2(10-1)=2.262。两种方法平均自信心得分之差μd=μ1-μ2的95%的置信区间为:
即(6.33,15.67)。
14从两个总体中各抽取一个n1=n2=250的独立随机样本,来自总体1的样本比例为p1=40%,来自总体2的样本比例为p2=30%。要求:
(1)构造π1-π2的90%的置信区间。
(2)构造π1-π2的95%的置信区间。
解:(1)已知:n1=n2=250,p1=40%,p2=30%,α=0.1,z0.1/2=1.645。π1-π2的90%的置信区间为:
即(3.02%,16.98%)。
(2)α=0.05,z0.05/2=1.96。π1-π2的90%的置信区间为:
即(1.68%,18.32%)。15生产工序的方差是工序质量的一个重要度量。当方差较大时,需要对工序进行改进以减小方差。表7-11是两部机器生产的袋茶重量(单位:g)的数据。
要求:构造两个总体方差比(σ12/σ22)95%的置信区间。解:根据样本数据计算得:s12=0.058375,s22=0.005846。当α=0.05时,由Exce1的“FINV”函数计算得:F0.025(21-1,21-1)=2.46,F1-α/2(n1-1,n2-1)=F0.975(21-1,21-1)=0.41。两个总体方差比σ12/σ22的95%的置信区间为:
即两个总体方差比σ12/σ22的95%的置信区间为:4.06≤σ12/σ22≤24.35。
16根据以往的生产数据,某种产品的废品率为2%。如果置信区间为95%,估计误差不超过4%,应抽取多少样本?解:已知:π=2%,E=4%,当α=0.05时,z0.05/2=1.96。应抽取的样本量为:
故应至少抽取样本量为48的样本。