分析内存泄露的一般步骤
如果发现Java应用程序占用的内存出现了泄露的迹象,那么我们一般采用下面的步骤分析
- 把Java应用程序使用的heap dump下来
- 使用Java heap分析工具,找出内存占用超出预期(一般是因为数量太多)的嫌疑对象
- 必要时,需要分析嫌疑对象和其他对象的引用关系。
- 查看程序的源代码,找出嫌疑对象数量过多的原因。
dump heap
如果Java应用程序出现了内存泄露,千万别着急着把应用杀掉,而是要保存现场。如果是互联网应用,可以把流量切到其他服务器。保存现场的目的就是为了把运行中JVM的heap dump下来。
JDK自带的jmap工具,可以做这件事情。它的执行方法是:
- jmap -dump:format=b,file=heap.bin <pid>
format=b的含义是,dump出来的文件时二进制格式。
file-heap.bin的含义是,dump出来的文件名是heap.bin。
<pid>就是JVM的进程号。
(在linux下)先执行ps aux | grep java,找到JVM的pid;然后再执行jmap -dump:format=b,file=heap.bin <pid>,得到heap dump文件。
analyze heap
将二进制的heap dump文件解析成human-readable的信息,自然是需要专业工具的帮助,这里推荐Memory Analyzer 。
Memory Analyzer,简称MAT,是Eclipse基金会的开源项目,由SAP和IBM捐助。巨头公司出品的软件还是很中用的,MAT可以分析包含数亿级对象的heap、快速计算每个对象占用的内存大小、对象之间的引用关系、自动检测内存泄露的嫌疑对象,功能强大,而且界面友好易用。
MAT的界面基于Eclipse开发,以两种形式发布:Eclipse插件和Eclipe RCP。MAT的分析结果以图片和报表的形式提供,一目了然。总之个人还是非常喜欢这个工具的。下面先贴两张官方的screenshots:
言归正传,我用MAT打开了heap.bin,很容易看出,char[]的数量出其意料的多,占用90%以上的内存 。一般来说,char[]在JVM确实会占用很多内存,数量也非常多,因为String对象以char[]作为内部存储。但是这次的char[]太贪婪了,仔细一观察,发现有数万计的char[],每个都占用数百K的内存 。这个现象说明,Java程序保存了数以万计的大String对象 。结合程序的逻辑,这个是不应该的,肯定在某个地方出了问题。
顺藤摸瓜
在可疑的char[]中,任意挑了一个,使用Path To GC Root功能,找到该char[]的引用路径,发现String对象是被一个HashMap中引用的 。这个也是意料中的事情,Java的内存泄露多半是因为对象被遗留在全局的HashMap中得不到释放。不过,该HashMap被用作一个缓存,设置了缓存条目的阈值,导达到阈值后会自动淘汰。从这个逻辑分析,应该不会出现内存泄露的。虽然缓存中的String对象已经达到数万计,但仍然没有达到预先设置的阈值(阈值设置地比较大,因为当时预估String对象都比较小)。
但是,另一个问题引起了我的注意:为什么缓存的String对象如此巨大?内部char[]的长度达数百K。虽然缓存中的String对象数量还没有达到阈值,但是String对象大小远远超出了我们的预期,最终导致内存被大量消耗,形成内存泄露的迹象(准确说应该是内存消耗过多) 。
就这个问题进一步顺藤摸瓜,看看String大对象是如何被放到HashMap中的。通过查看程序的源代码,我发现,确实有String大对象,不过并没有把String大对象放到HashMap中,而是把String大对象进行split(调用String.split方法),然后将split出来的String小对象放到HashMap中 了。
这就奇怪了,放到HashMap中明明是split之后的String小对象,怎么会占用那么大空间呢?难道是String类的split方法有问题?
查看代码
带着上述疑问,我查阅了Sun JDK6中String类的代码,主要是是split方法的实现:
Java代码
1. public String[] split(String regex, int
2. return Pattern.compile(regex).split(this, limit);
3. }
可以看出,Stirng.split方法调用了Pattern.split方法。继续看Pattern.split方法的代码:
Java代码
1. public String[] split(CharSequence input, int
2. int index = 0;
3. boolean matchLimited = limit > 0;
4. new
5. Matcher m = matcher(input);
6. // Add segments before each match found
7. while(m.find()) {
8. if (!matchLimited || matchList.size() < limit - 1) {
9. String match = input.subSequence(index, m.start()).toString();
10. matchList.add(match);
11. index = m.end();
12. else if (matchList.size() == limit - 1) { // last one
13. String match = input.subSequence(index,
14. input.length()).toString();
15. matchList.add(match);
16. index = m.end();
17. }
18. }
19. // If no match was found, return this
20. if (index == 0)
21. return new
22. // Add remaining segment
23. if
24. matchList.add(input.subSequence(index, input.length()).toString());
25. // Construct result
26. int
27. if (limit == 0)
28. while (resultSize > 0 && matchList.get(resultSize-1).equals(""))
29. resultSize--;
30. new
31. return matchList.subList(0, resultSize).toArray(result);
32. }
注意看第9行:Stirng match = input.subSequence(intdex, m.start()).toString();
这里的match就是split出来的String小对象,它其实是String大对象subSequence的结果。继续看String.subSequence的代码:
Java代码
1. public CharSequence subSequence(int beginIndex, int
2. return this.substring(beginIndex, endIndex);
3. }
String.subSequence有调用了String.subString,继续看:
Java代码
1. public String substring(int beginIndex, int
2. if (beginIndex < 0) {
3. throw new
4. }
5. if
6. throw new
7. }
8. if
9. throw new
10. }
11. return ((beginIndex == 0) && (endIndex == count)) ? this
12. new
13. }
看第11、12行,我们终于看出眉目,如果subString的内容就是完整的原字符串,那么返回原String对象;否则,就会创建一个新的String对象,但是这个String对象貌似使用了原String对象的char[]。我们通过String的构造函数确认这一点:
Java代码
1. // Package private constructor which shares value array for speed.
2. int offset, int count, char
3. this.value = value;
4. this.offset = offset;
5. this.count = count;
6. }
为了避免内存拷贝、加快速度,Sun JDK直接复用了原String对象的char[],偏移量和长度来标识不同的字符串内容。也就是说,subString出的来String小对象仍然会指向原String大对象的char[],split也是同样的情况 。这就解释了,为什么HashMap中String对象的char[]都那么大。
原因解释
其实上一节已经分析出了原因,这一节再整理一下:
- 程序从每个请求中得到一个String大对象,该对象内部char[]的长度达数百K。
- 程序对String大对象做split,将split得到的String小对象放到HashMap中,用作缓存。
- Sun JDK6对String.split方法做了优化,split出来的Stirng对象直接使用原String对象的char[]
- HashMap中的每个String对象其实都指向了一个巨大的char[]
- HashMap的上限是万级的,因此被缓存的Sting对象的总大小=万*百K=G级。
- G级的内存被缓存占用了,大量的内存被浪费,造成内存泄露的迹象。
解决方案
原因找到了,解决方案也就有了。split是要用的,但是我们不要把split出来的String对象直接放到HashMap中,而是调用一下String的拷贝构造函数String(String original),这个构造函数是安全的,具体可以看代码:
Java代码
1. /**
2. * Initializes a newly created {@code String} object so that it represents
3. * the same sequence of characters as the argument; in other words, the
4. * newly created string is a copy of the argument string. Unless an
5. * explicit copy of {@code original} is needed, use of this constructor is
6. * unnecessary since Strings are immutable.
7. *
8. * @param original
9. * A {@code String}
10. */
11. public
12. int
13. char[] originalValue = original.value;
14. char[] v;
15. if
16. // The array representing the String is bigger than the new
17. // String itself. Perhaps this constructor is being called
18. // in order to trim the baggage, so make a copy of the array.
19. int
20. v = Arrays.copyOfRange(originalValue, off, off+size);
21. else
22. // The array representing the String is the same
23. // size as the String, so no point in making a copy.
24. v = originalValue;
25. }
26. this.offset = 0;
27. this.count = size;
28. this.value = v;
29. }
只是,new String(string)的代码很怪异,囧。或许,subString和split应该提供一个选项,让程序员控制是否复用String对象的char[]。
是否Bug
虽然,subString和split的实现造成了现在的问题,但是这能否算String类的bug呢?个人觉得不好说。因为这样的优化是比较合理 的,subString和spit的结果肯定是原字符串的连续子序列。只能说,String不仅仅是一个核心类,它对于JVM来说是与原始类型同等重要的类型。
JDK实现对String做各种可能的优化都是可以理解的。但是优化带来了忧患,我们程序员足够了解他们,才能用好他们。
1 内存分析
1.1 jmap -histo 命令
pid=`jps | awk '{if ($2 == "Jps") print $1}'`
jmap -histo $pid >>1.txt 查看pid中类的内存占用
num #instances(实例数) #bytes(占用字节) class name
class name 解读
B代表byte
C代表char
D代表double
F代表float
I代表int
J代表long
Z代表boolean
前边有[代表数组,[I 就相当于int[]
对象用[L+类名表示
如果某个类的个数特别多, 就得检查是否内存溢出了。
1.2 命令 jmap -heap
jmap -heap 22792
Attaching to process ID 22792, please wait...
Debugger attached successfully.
Server compiler detected.
JVM version is 19.0-b09
using thread-local object allocation.
Parallel GC with 8 thread(s)
Heap Configuration:
MinHeapFreeRatio = 40 # 对应jvm启动参数 -XX:MinHeapFreeRatio 设置JVM堆最小空闲比率 (默认40)
MaxHeapFreeRatio = 70 # 对应jvm启动参数 -XX:MaxHeapFreeRatio 设置JVM堆最大空闲比率 (默认70)
MaxHeapSize = 10737418240 (10240.0MB) # 对应jvm启动参数 -XX:MaxHeapSize 设置JVM堆的最大大小
NewSize = 5368709120 (5120.0MB) # 对应jvm启动参数 -XX:NewSize 设置JVM堆的年轻代的默认大小
MaxNewSize = 5368709120 (5120.0MB) # 对应jvm启动参数 -XX:MaxNewSize 设置JVM堆的年轻带的最大大小
OldSize = 5439488 (5.1875MB) # 对应jvm启动参数 -XX:OldSize 设置JVM堆的老年代的大小
NewRatio = 2 # 对应jvm启动参数 -XX:NewRatio 老年代与年轻代的大小比率
SurvivorRatio = 8 # 对应jvm启动参数 -XX:SurvivorRatio 设置年轻代中Eden区与Survivor区的大小比值
PermSize = 21757952 (20.75MB) # 对应jvm启动参数 -XX:PermSize 设置JVM堆的持久带的初始大小
MaxPermSize = 1073741824 (1024.0MB) # 对应jvm启动参数 -XX:MaxPermSize 设置JVM堆的永生代的最大大小
Heap Usage:
PS Young Generation
Eden Space: # Eden区内存分布 总量 已使用 空闲 使用比率
capacity = 5357305856 (5109.125MB)
used = 1647437208 (1571.118553161621MB)
free = 3709868648 (3538.006446838379MB)
30.751225565270396% used
From Space: # 其中一个Survivor(sərˈvaɪvər)区内存分布 总量 已使用 空闲 使用比率
capacity = 5898240 (5.625MB)
used = 2375696 (2.2656402587890625MB)
free = 3522544 (3.3593597412109375MB)
40.278049045138886% used
To Space: # 另一个Survivor区内存分布 总量 已使用 空闲 使用比率
capacity = 5505024 (5.25MB)
used = 0 (0.0MB)
free = 5505024 (5.25MB)
0.0% used
PS Old Generation # 当前老年代内存分布 总量 已使用 空闲 使用比率
capacity = 5368709120 (5120.0MB)
used = 181392168 (172.98905181884766MB)
free = 5187316952 (4947.010948181152MB)
3.3786924183368683% used
PS Perm Generation # 当前持久代内存分布 总量 已使用 空闲 使用比率
capacity = 72286208 (68.9375MB)
used = 72213176 (68.86785125732422MB)
free = 73032 (0.06964874267578125MB)
99.89896827898346% used
1.3
jstat -gcutil [pid] [internal] 很实用
S0: Survivor space 0 区已使用空间的百分比
S1: Survivor space 1 区已使用空间的百分比
E: Eden space 区已使用空间的百分比
O: Old space 区已使用空间的百分比
P: Perm space 区已使用空间的百分比
YGC: Young GC 的次数
YGCT: Young GC 所用的时间 单位秒
FGC: Full GC 的次数
FGCT: Full GC 所用的时间 单位秒
GCT: 用于垃圾回收的总时间 单位秒
1.4
尽量减少Full GC的次数, 因为Full GC的消耗要比Monitor GC要大
年轻代大小: 尽可能设大, 降低年轻代GC次数, 同时也减少达到老年代的对象?
分配堆栈的最小值最好等于最大值, 因为动态分配也是需要耗费时间的. 如年轻代, 老年代, 持久代的最小最大值可设为一致
2 参数调优
jmap (linux下特有,也是很常用的一个命令)
观察运行中的jvm物理内存的占用情况。
参数如下:
-heap :打印jvm heap的情况
-histo: 打印jvm heap的直方图。其输出信息包括类名,对象数量,对象占用大小。
-histo:live : 同上,但是只答应存活对象的情况
-permstat: 打印permanent generation heap情况
命令使用:
jmap -heap 3409
可以观察到New Generation(Eden Space,From Space,To Space),tenured generation,Perm Generation的内存使用情况
输出内容:
jmap -histo 3409 | jmap -histo:live 3409
可以观察heap中所有对象的情况(heap中所有生存的对象的情况)。包括对象数量和所占空间大小。
输出内容:
写个脚本,可以很快把占用heap最大的对象找出来,对付内存泄漏特别有效。
如果结果很多,可以用以下命令输出到文本文件。
jmap -histo 3409 | jmap -histo:live 3409 > a.txt
jinfo:可以输出并修改运行时的java 进程的opts。
jps:与unix上的ps类似,用来显示本地的java进程,可以查看本地运行着几个java程序,并显示他们的进程号。
jstat:一个极强的监视VM内存工具。可以用来监视VM内存内的各种堆和非堆的大小及其内存使用量。
jmap:打印出某个java进程(使用pid)内存内的所有'对象'的情况(如:产生那些对象,及其数量)。
jconsole:一个java GUI监视工具,可以以图表化的形式显示各种数据。并可通过远程连接监视远程的服务器VM。
详细:在使用这些工具前,先用JPS命令获取当前的每个JVM进程号,然后选择要查看的JVM。
jstat工具特别强大,有众多的可选项,详细查看堆内各个部分的使用量,以及加载类的数量。使用时,需加上查看进程的进程id,和所选参数。以下详细介绍各个参数的意义。
jstat -class pid:显示加载class的数量,及所占空间等信息。
jstat -compiler pid:显示VM实时编译的数量等信息。
jstat -gc pid:可以显示gc的信息,查看gc的次数,及时间。其中最后五项,分别是young gc的次数,young gc的时间,full gc的次数,full gc的时间,gc的总时间。
jstat -gccapacity:可以显示,VM内存中三代(young,old,perm)对象的使用和占用大小,如:PGCMN显示的是最小perm的内存使用量,PGCMX显示的是perm的内存最大使用量,PGC是当前新生成的perm内存占用量,PC是但前perm内存占用量。其他的可以根据这个类推, OC是old内纯的占用量。
jstat -gcnew pid:new对象的信息。
jstat -gcnewcapacity pid:new对象的信息及其占用量。
jstat -gcold pid:old对象的信息。
jstat -gcoldcapacity pid:old对象的信息及其占用量。
jstat -gcpermcapacity pid: perm对象的信息及其占用量。
jstat -util pid:统计gc信息统计。
jstat -printcompilation pid:当前VM执行的信息。
除了以上一个参数外,还可以同时加上 两个数字,如:jstat -printcompilation 3024 250 6是每250毫秒打印一次,一共打印6次,还可以加上-h3每三行显示一下标题。
jmap是一个可以输出所有内存中对象的工具,甚至可以将VM 中的heap,以二进制输出成文本。
命令:jmap -dump:format=b,file=heap.bin
file:保存路径及文件名
pid:进程编号
?jmap -histo:live pid| less :堆中活动的对象以及大小
?jmap -heap pid : 查看堆的使用状况信息
jinfo:的用处比较简单,就是能输出并修改运行时的java进程的运行参数。用法是jinfo -opt pid 如:查看2788的MaxPerm大小可以用 jinfo -flag MaxPermSize 2788。
jconsole是一个用java写的GUI程序,用来监控VM,并可监控远程的VM,非常易用,而且功能非常强。使用方法:命令行里打 jconsole,选则进程就可以了。
JConsole中关于内存分区的说明。
Eden Space (heap): 内存最初从这个线程池分配给大部分对象。
Survivor Space (heap):用于保存在eden space内存池中经过垃圾回收后没有被回收的对象。
Tenured Generation (heap):用于保持已经在 survivor space内存池中存在了一段时间的对象。
Permanent Generation (non-heap): 保存虚拟机自己的静态(refective)数据,例如类(class)和方法(method)对象。Java虚拟机共享这些类数据。这个区域被分割为只读的和只写的,
Code Cache (non-heap):HotSpot Java虚拟机包括一个用于编译和保存本地代码(native code)的内存,叫做“代码缓存区”(code cache)
?jstack ( 查看jvm线程运行状态,是否有死锁现象等等信息) : jstack pid : thread dump
?jstat -gcutil pid 1000 100 : 1000ms统计一次gc情况统计100次;
另外推荐一款查看jmap dump 的内存对象工具 MemoryAnalyzer