MySQL事务处理和锁机制
1.隔离级别
(1)读不提交(ReadUncommited,RU)
这种隔离级别下,事务间完全不隔离,会产生脏读,可以读取未提交的记录,实际情况下不会使用。
(2)读提交(Readcommited,RC)
仅能读取到已提交的记录,这种隔离级别下,会存在幻读现象,所谓幻读是指在同一个事务中,多次执行同一个查询,返回的记录不完全相同的现象。幻读产生的根本原因是,在RC隔离级别下,每条语句都会读取已提交事务的更新,若两次查询之间有其他事务提交,则会导致两次查询结果不一致。虽然如此,读提交隔离级别在生产环境中使用很广泛。
(3)可重复读(RepeatableRead, RR)
可重复读解决了幻读问题。不是所有的数据库都实现了该隔离级别,后面会简单介绍下mysql是如何实现可重复读隔离级别的。
(4)串行化(Serializable)
在串行化隔离模式下,消除了脏读,幻象,但事务并发度急剧下降,事务的隔离级别与事务的并发度成反比,隔离级别越高,事务的并发度越低。实际生产环境下,dba会在并发和满足业务需求之间作权衡,选择合适的隔离级别。
2.并发调度方式
与隔离级别紧密联系的另外一个东西是并发调度,通过并发调度实现隔离级别。对于并发调度,不同的数据库厂商有不同的实现机制,但基本原理类似,都是通过加锁来保护数据对象不同时被多个事务修改。多版本的并发控制(MVCC)相对于传统的基于锁的并发控制主要特点是读不上锁,这种特性对于读多写少的场景,大大提高了系统的并发度,因此大部分关系型数据库都实现了MVCC。
3.两阶段锁协议
两阶段锁协议的含义是,事务分为两个阶段,第一个阶段是获得封锁,第二个阶段是释放封锁。两阶段封锁保证并发调度的正确性。两阶段封锁相对于一阶段封锁(一次性获得事务需要的所有锁),提高了并发度,但同时也带来了死锁的可能。
4.死锁
所谓死锁是指两个或多个事务,各自占有对方的期望获得的资源,形成的循环等待,彼此无法继续执行的一种状态。
5.锁类型
根据锁的类型分,可以分为共享锁,排他锁,意向共享锁和意向排他锁。根据锁的粒度分,又可以分为行锁,表锁。对于mysql而言,事务机制更多是靠底层的存储引擎来实现,因此,mysql层面只有表锁,而支持事务的innodb存储引擎则实现了行锁(记录锁),gap锁,next-key锁。Mysql的记录锁实质是索引记录的锁,因为innodb是索引组织表;gap锁是索引记录间隙的锁,这种锁只在RR隔离级别下有效;next-key锁是记录锁加上记录之前gap锁的组合。mysql通过gap锁和next-key锁实现RR隔离级别。
说明:
1. 对于更新操作(读不上锁),只有走索引才可能上行锁;否则会对聚簇索引的每一行上写锁,实际等同于对表上写锁。
2. 若多个物理记录对应同一个索引,若同时访问,也会出现锁冲突;
3. 当表有多个索引时,不同事务可以用不同的索引锁住不同的行,另外innodb会同时用行锁对数据记录(聚簇索引)加锁。
4. MVCC并发控制机制下,任何操作都不会阻塞读操作,读操作也不会阻塞任何操作,只因为读不上锁。
7.mysql锁相关操作
(1).查看最近一次死锁信息
show innodbengine status;
查看LATEST DETECTED DEADLOCK这一栏的相关信息。
(2)查看正在使用的锁
SELECT r.trx_idwaiting_trx_id,
r.trx_querywaiting_query,
b.trx_idblocking_trx_id,
b.trx_queryblocking_query,
b.trx_mysql_thread_idblocking_thread,
b.trx_started,
b.trx_wait_started
FROMinformation_schema.innodb_lock_waits w
INNER JOINinformation_schema.innodb_trx b
ON b.trx_id= w.blocking_trx_id
INNER JOINinformation_schema.innodb_trx r
ON r.trx_id= w.requesting_trx_id
(3)查看事务的隔离级别
showvariables like 'tx_isolation';
8.典型SQL语句锁分析
(1).select......lock in share mode 获得共享锁。【对于表上意向共享锁;对于读取的每一个行,上行级共享锁】
(2).select...... for update 获得排他锁【对于表上意向排他锁;对于读取的每一个行,会上行级排他锁】
(3).insertinto target_tab select * from source_tab where ...
(4).createtable new_tab as select ... From source_tab where ...
(3)和(4)在RR隔离级别下,会对source_tab上锁,防止出现幻读;RC隔离级别下,不上锁。
(5).FLUSHTABLES WITH READ LOCK
全局读锁定,锁定数据库中的所有库中的所有表,mysqldump会用到这个命令。
9、死锁及处理方式
所谓死锁<DeadLock>: 是指两个或两个以上的进程在执行过程中,
因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去.
此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等竺的进程称为死锁进程.
表级锁不会产生死锁.所以解决死锁主要还是真对于最常用的InnoDB.
遇到死锁的处理方式
mysql -uxxx-pxxx -h服务器ip --port=服务器端口;(如果服务器设置了ip和端口访问的话,一定要带ip和端口)
mysql>show processlist; #查看正在执行的sql (show full processlist;查看全部sql)
mysql>kill id #杀死sql进程;
如果进程太多找不到,就重启mysql吧
/ect/init.d/mysqlrestart
或/ect/init.d/mysqlstop(如果关不掉就直接kill -9 进程id) 再/ect/init.d/mysqlstart
去看看mysql日志文件是否保存死锁日志:
常用目录:/var/log/mysqld.log;(该目录还有其它相关日志文件就都看看)
怎么解决还是要看具体什么问题.
1. 事务处理和并发性
1.1. 基础知识和相关概念
1 )全部的表类型都可以使用锁,但是只有 InnoDB 和 BDB 才有内置的事务功能。
2 )使用 begin 开始事务,使用 commit 结束事务,中间可以使用 rollback 回滚事务。
3 )在默认情况下, InnoDB 表支持一致读。
SQL 标准中定义了 4 个隔离级别: read uncommited , read commited , repeatable read , serializable 。
readuncommited 即脏读,一个事务修改了一行,另一个事务也可以读到该行。
如果第一个事务执行了回滚,那么第二个事务读取的就是从来没有正式出现过的值。 ?
readcommited 即一致读,试图通过只读取提交的值的方式来解决脏读的问题,但是这又引起了不可重复读取的问题。
一个事务执行一个查询,读取了大量的数据行。在它结束读取之前,另一个事务可能完成了对数据行的更改。当第一个事务试图再次执行同一个查询,服务器就会返回不同的结果。
repeatableread 即可重复读,在一个事务对数据行执行读取或写入操作时锁定了这些数据行。
但是这种方式又引发了幻想读的问题。
因为只能锁定读取或写入的行,不能阻止另一个事务插入数据,后期执行同样的查询会产生更多的结果。
serializable模式中,事务被强制为依次执行。这是 SQL 标准建议的默认行为。
4 )如果多个事务更新了同一行,就可以通过回滚其中一个事务来解除死锁。
5 ) MySQL 允许利用 set transaction 来设置隔离级别。
6 )事务只用于 insert 和 update 语句来更新数据表,不能用于对表结构的更改。执行一条更改表结构或begin 则会立即提交当前的事务。
7 )所有表类型都支持表级锁,但是 MyISAM 只支持表级锁。
8 )有两种类型的表级锁:读锁和写锁。
读锁是共享锁,支持并发读,写操作被锁。
写锁是独占锁,上锁期间其他线程不能读表或写表。
8 )如果要支持并发读写,建议采用 InnoDB 表,因为它是采用行级锁,可以获得更多的更新性能。
9 )很多时候,可以通过经验来评估什么样的锁对应用程序更合适,不过通常很难说一个锁比别的更好,这全都要依据应用程序来决定,不同的地方可能需要不同的锁。当前 MySQL 已经支持 ISAM, MyISAM, MEMORY (HEAP) 类型表的表级锁了, BDB 表支持页级锁, InnoDB 表支持行级锁。
10 ) MySQL 的表级锁都是写锁优先,而且是采用排队机制,这样不会出现死锁的情况。对于 InnoDB 和 BDB 存储引擎来说,是可能产生死锁的。这是因为 InnoDB 会自动捕获行锁, BDB 会在执行 SQL 语句时捕获页锁的,而不是在事务的开始就这么做。
1.2. 不同锁的优缺点及选择
行级锁的优点及选择 :
1 )在很多线程请求不同记录时减少冲突锁。
2 )事务回滚时减少改变数据。
3 )使长时间对单独的一行记录加锁成为可能。
行级锁的缺点 :
1 )比页级锁和表级锁消耗更多的内存。
2 )当在大量表中使用时,比页级锁和表级锁更慢,因为他需要请求更多的所资源。
3 )当需要频繁对大部分数据做 GROUP BY 操作或者需要频繁扫描整个表时,就明显的比其它锁更糟糕。
4 )使用更高层的锁的话,就能更方便的支持各种不同的类型应用程序,因为这种锁的开销比行级锁小多了。
5 )可以用应用程序级锁来代替行级锁,例如 MySQL 中的 GET_LOCK() 和 RELEASE_LOCK() 。但它们是劝告锁(原文: These are advisory locks ),因此只能用于安全可信的应用程序中。
6 )对于 InnoDB 和 BDB 表, MySQL 只有在指定用LOCK TABLES 锁表时才使用表级锁。在这两种表中,建议最好不要使用 LOCK TABLES ,因为 InnoDB 自动采用行级锁, BDB 用页级锁来保证事务的隔离。
表锁的优点及选择:
1 )很多操作都是读表。
2 )在严格条件的索引上读取和更新,当更新或者删除可以用单独的索引来读取得到时: UPDATE tbl_name SET column=value WHEREunique_key_col=key_value;DELETE FROM tbl_name WHERE unique_key_col=key_value;
3 ) SELECT 和 INSERT 语句并发的执行,但是只有很少的 UPDATE 和 DELETE 语句。
4 )很多的扫描表和对全表的 GROUP BY 操作,但是没有任何写表。
表锁的缺点:
1 )一个客户端提交了一个需要长时间运行的 SELECT 操作。
2 )其他客户端对同一个表提交了 UPDATE 操作,这个客户端就要等到 SELECT 完成了才能开始执行。
3 )其他客户端也对同一个表提交了 SELECT 请求。由于 UPDATE 的优先级高于 SELECT ,所以 SELECT 就会先等到 UPDATE 完成了之后才开始执行,它也在等待第一个 SELECT 操作。
1.3. 如何避免锁的资源竞争
1 )让 SELECT 速度尽量快,这可能需要创建一些摘要表。
2 )启动 mysqld 时使用参数 --low-priority-updates 。这就会让更新操作的优先级低于SELECT 。
这种情况下,在上面的假设中,第二个 SELECT 就会在 INSERT 之前执行了,而且也无需等待第一个 SELECT 了。
3 )可以执行 SETLOW_PRIORITY_UPDATES=1 命令,指定所有的更新操作都放到一个指定的链接中去完成。
4 )用 LOW_PRIORITY 属性来降低 INSERT , UPDATE ,DELETE 的优先级。
5 )用 HIGH_PRIORITY 来提高 SELECT 语句的优先级。
6 )从 MySQL 3.23.7 开始,可以在启动 mysqld 时指定系统变量 max_write_lock_count 为一个比较低的值,它能强制临时地提高表的插入数达到一个特定值后的所有 SELECT 操作的优先级。它允许在 WRITE 锁达到一定数量后有 READ 锁。
7 )当 INSERT 和 SELECT 一起使用出现问题时,可以转而采用 MyISAM 表,它支持并发的 SELECT 和 INSERT 操作。
8 )当在同一个表上同时有插入和删除操作时, INSERTDELAYED 可能会很有用。
9 )当 SELECT 和 DELETE 一起使用出现问题时, DELETE 的 LIMIT 参数可能会很有用。
10 )执行 SELECT 时使用 SQL_BUFFER_RESULT 有助于减短锁表的持续时间。
11 )可以修改源代码 `mysys/thr_lock.c' ,只用一个所队列。这种情况下,写锁和读锁的优先级就一样了,这对一些应用可能有帮助。