TOPSIS法(Technique for Order Preference by Similarity to Ideal Solution) 可翻译为逼近理想解排序法,国内常简称为优劣解距离法 TOPSIS 法是一种常用的综合评价方法,其能充分利用原始数据的信息, 其结果能精确地反映各评价方案之间的差距。

使用此类方法,有以下几个步骤:、

目录

第一步:将原始矩阵正向化

1、常见的四个指标

 2、转化方法

(1)极小型指标 转为极大型指标

 (2)中间型指标转为极大型指标

(3)区间型指标转为极大型指标

第二步:正向化矩阵标准化

第三步:计算得分并归一化

四、模型优化

五、代码实现 

1、正向化函数的实现

2、Topsis方法实现


第一步:将原始矩阵正向化

将原始矩阵正向化,就是将所有的指标类型统一转化为极大型(转换函数不唯一)

1、常见的四个指标

top res 的值比jvm还要大_权重

 2、转化方法

(1)极小型指标 转为极大型指标

top res 的值比jvm还要大_代码实现_02

 

 (2)中间型指标转为极大型指标

top res 的值比jvm还要大_权重_03

(3)区间型指标转为极大型指标

top res 的值比jvm还要大_代码实现_04

 

第二步:正向化矩阵标准化

标准化的目的是消除不同指标量纲的影响

top res 的值比jvm还要大_归一化_05

第三步:计算得分并归一化

 

top res 的值比jvm还要大_matlab_06

四、模型优化

当每一个指标都要权重时,则距离公式改变为:

top res 的值比jvm还要大_matlab_07

 

五、代码实现 

1、正向化函数的实现

function [posit_x] = Positivization(x,type,i)
% 输入变量有三个:
% x:需要正向化处理的指标对应的原始列向量
% type: 指标的类型(1:极小型, 2:中间型, 3:区间型)
% i: 正在处理的是原始矩阵中的哪一列
% 输出变量posit_x表示:正向化后的列向量
    if type == 1  %极小型
        disp(['第' num2str(i) '列是极小型,正在正向化'] )
        posit_x = Min2Max(x);  %调用Min2Max函数来正向化
        disp(['第' num2str(i) '列极小型正向化处理完成'] )
        disp('~~~~~~~~~~~~~~~~~~~~分界线~~~~~~~~~~~~~~~~~~~~')
    elseif type == 2  %中间型
        disp(['第' num2str(i) '列是中间型'] )
        best = input('请输入最佳的那一个值: ');
        posit_x = Mid2Max(x,best);
        disp(['第' num2str(i) '列中间型正向化处理完成'] )
        disp('~~~~~~~~~~~~~~~~~~~~分界线~~~~~~~~~~~~~~~~~~~~')
    elseif type == 3  %区间型
        disp(['第' num2str(i) '列是区间型'] )
        a = input('请输入区间的下界: ');
        b = input('请输入区间的上界: '); 
        posit_x = Inter2Max(x,a,b);
        disp(['第' num2str(i) '列区间型正向化处理完成'] )
        disp('~~~~~~~~~~~~~~~~~~~~分界线~~~~~~~~~~~~~~~~~~~~')
    else
        disp('没有这种类型的指标,请检查Type向量中是否有除了1、2、3之外的其他值')
    end
end

2、Topsis方法实现

%%  第一步:判断是否需要正向化
[n,m] = size(X);%X为指标的原始矩阵
disp(['共有' num2str(n) '个评价对象, ' num2str(m) '个评价指标']) 
Judge = input(['这' num2str(m) '个指标是否需要经过正向化处理,需要请输入1 ,不需要输入0:  ']);

if Judge == 1
    Position = input('请输入需要正向化处理的指标所在的列,例如第2、3、6三列需要处理,那么你需要输入[2,3,6]: '); %[2,3,4]
    disp('请输入需要处理的这些列的指标类型(1:极小型, 2:中间型, 3:区间型) ')
    Type = input('例如:第2列是极小型,第3列是区间型,第6列是中间型,就输入[1,3,2]:  '); %[2,1,3]
    % 注意,Position和Type是两个同维度的行向量
    for i = 1 : size(Position,2)  %这里需要对这些列分别处理,因此我们需要知道一共要处理的次数,即循环的次数
        X(:,Position(i)) = Positivization(X(:,Position(i)),Type(i),Position(i));
         % Positivization是我们自己定义的函数,其作用是进行正向化,其一共接收三个参数
    end
    disp('正向化后的矩阵 X =  ')
    disp(X)
end

%% 让用户判断是否需要增加权重
disp('请输入是否需要增加权重向量,需要输入1,不需要输入0')
Judge = input('请输入是否需要增加权重: ');
if Judge == 1
    disp(['如果你有3个指标,你就需要输入3个权重,例如它们分别为0.25,0.25,0.5, 则你需要输入[0.25,0.25,0.5]']);
    weigh = input(['你需要输入' num2str(m) '个权数。' '请以行向量的形式输入这' num2str(m) '个权重: ']);
    OK = 0;  % 用来判断用户的输入格式是否正确
    while OK == 0 
        if abs(sum(weigh) - 1)<0.000001 && size(weigh,1) == 1 && size(weigh,2) == m   % 这里要注意浮点数的运算是不精准的。
             OK =1;
        else
            weigh = input('你输入的有误,请重新输入权重行向量: ');
        end
    end
else
    weigh = ones(1,m) ./ m ; %如果不需要加权重就默认权重都相同,即都为1/m
end
%% 第二步:对正向化后的矩阵进行标准化
Z = X ./ repmat(sum(X.*X) .^ 0.5, n, 1);
disp('标准化矩阵 Z = ')
disp(Z)

%% 第三步:计算与最大值的距离和最小值的距离,并算出得分
D_P = sum([(Z - repmat(max(Z),n,1)) .^ 2 ],2) .^ 0.5;   % D+ 与最大值的距离向量
D_N = sum([(Z - repmat(min(Z),n,1)) .^ 2 ],2) .^ 0.5;   % D- 与最小值的距离向量
S = D_N ./ (D_P+D_N);    % 未归一化的得分
disp('最后的得分为:')
stand_S = S / sum(S)
[sorted_S,index] = sort(stand_S ,'descend')