转载(
SQL语句编写注意问题 )
1. IS NULL 与 IS NOT NULL
不能用null作索引,任何包含null值的列都将不会被包含在索引中。即使索引有多列这样的情况下,只要这些列中有一列含有null,该列就会从索引中排除。也就是说如果某列存在空值,即使对该列建索引也不会提高性能。
任何在where子句中使用is null或is not null的语句优化器是不允许使用索引的。
2. 联接列
对于有联接的列,即使最后的联接值为一个静态值,优化器是不会使用索引的。我们一起来看一个例子,假定有一个职工表(employee),对于一个职工的姓和名分成两列存放(FIRST_NAME和LAST_NAME),现在要查询一个叫比尔.克林顿(Bill Cliton)的职工。
下面是一个采用联接查询的SQL语句,
select * from employss
where
first_name//''//last_name ='Beill Cliton';
上面这条语句完全可以查询出是否有Bill Cliton这个员工,但是这里需要注意,系统优化器对基于last_name创建的索引没有使用。
当采用下面这种SQL语句的编写,数据库系统就可以采用基于last_name创建的索引。
Select * from employee
where
first_name ='Beill' and last_name ='Cliton';
遇到下面这种情况又如何处理呢?如果一个变量(name)中存放着Bill Cliton这个员工的姓名,对于这种情况我们又如何避免全程遍历,使用索引呢?可以使用一个函数,将变量name中的姓和名分开就可以了,但是有一点需要注意,这个函数是不能作用在索引列上。下面是SQL查询脚本:
select * from employee
where
first_name = SUBSTR('&&name',1,INSTR('&&name',' ')-1)
and
last_name = SUBSTR('&&name',INSTR('&&name’,' ')+1)
3. 带通配符(%)的like语句
同样以上面的例子来看这种情况。目前的需求是这样的,要求在职工表中查询名字中包含cliton的人。可以采用如下的查询SQL语句:
select * from employee where last_name like '%cliton%';
这里由于通配符(%)在搜寻词首出现,所以数据库系统不使用last_name的索引。在很多情况下可能无法避免这种情况,但是一定要心中有底,通配符如此使用会降低查询速度。然而当通配符出现在字符串其他位置时,优化器就能利用索引。在下面的查询中索引得到了使用:
select * from employee where last_name like 'c%';
4. Order by语句
ORDER BY语句决定了数据库如何将返回的查询结果排序。Order by语句对要排序的列没有什么特别的限制,也可以将函数加入列中(象联接或者附加等)。任何在Order by语句的非索引项或者有计算表达式都将降低查询速度。
仔细检查order by语句以找出非索引项或者表达式,它们会降低性能。解决这个问题的办法就是重写order by语句以使用索引,也可以为所使用的列建立另外一个索引,同时应绝对避免在order by子句中使用表达式。
5. NOT
我们在查询时经常在where子句使用一些逻辑表达式,如大于、小于、等于以及不等于等等,也可以使用and(与)、or(或)以及not(非)。NOT可用来对任何逻辑运算符号取反。下面是一个NOT子句的例子:
.... where not (status ='VALID')
如果要使用NOT,则应在取反的短语前面加上括号,并在短语前面加上NOT运算符。NOT运算符包含在另外一个逻辑运算符中,这就是不等于(<>)运算符。换句话说,即使不在查询where子句中显式地加入NOT词,NOT仍在运算符中,见下例:
.... where status <>'INVALID';
再看下面这个例子:
select * from employee where salary<>3000;
对这个查询,可以改写为不使用NOT:
select * from employee where salary<3000 or salary>3000;
虽然这两种查询的结果一样,但是第二种查询方案会比第一种查询方案更快些。第二种查询允许数据库对salary列使用索引,而第一种查询则不能使用索引。
6. IN和EXISTS
有时候会将一列和一系列值相比较。最简单的办法就是在where子句中使用子查询。在where子句中可以使用两种格式的子查询。
第一种格式是使用IN操作符:
.... where column in(select * from ... where ...);
第二种格式是使用EXIST操作符:
.... where exists (select 'X' from ...where ...);
我相信绝大多数人会使用第一种格式,因为它比较容易编写,而实际上第二种格式要远比第一种格式的效率高。在数据库中可以几乎将所有的IN操作符子查询改写为使用EXISTS的子查询。
第二种格式中,子查询以‘select 'X'开始。运用EXISTS子句不管子查询从表中抽取什么数据它只查看where子句。这样优化器就不必遍历整个表而仅根据索引就可完成工作(这里假定在where语句中使用的列存在索引)。相对于IN子句来说,EXISTS使用相连子查询,构造起来要比IN子查询困难一些。
通过使用EXIST,数据库系统会首先检查主查询,然后运行子查询直到它找到第一个匹配项,这就节省了时间。数据库系统在执行IN子查询时,首先执行子查询,并将获得的结果列表存放在在一个加了索引的临时表中。在执行子查询之前,系统先将主查询挂起,待子查询执行完毕,存放在临时表中以后再执行主查询。这也就是使用EXISTS比使用IN通常查询速度快的原因。
同时应尽可能使用NOT EXISTS来代替NOT IN,尽管二者都使用了NOT(不能使用索引而降低速度),NOT EXISTS要比NOT IN查询效率更高。
7.限制数据转换和串操作
优化器一般不会根据WHERE子句中的表达式和数据转换式生成索引选择。例如:
paycheck * 12>36000 or substring(lastname,1,1)=“L”
如果该表建立了针对paycheck和lastname的索引,就不能利用索引进行优化,可以改写上面的条件表达式为:
paycheck<36000/12 or lastname like “L%”
8.LEFT语句的转换
有一条语句大致如下:
where LEFT(PtypID,4)=”0001”
在SQL Server实际执行的时候,会自动把该语句转换为如下语句来执行:
where substring(PtypeID,1,4)=”0001”
所以,为了避免这种自动转化,提高一些效率,那么我们可以直接书写成上面的语句。