最近毕设需要用到 Spark 集群,所以就记录下了部署的过程。我们知道 Spark 官方提供了三种集群部署方案: Standalone, Mesos, YARN。其中 Standalone 最为方便,本文主要讲述结合 YARN 的部署方案。
软件环境:
Ubuntu 14.04.1 LTS (GNU/Linux 3.13.0-32-generic x86_64)
Hadoop: 2.6.0
Spark: 1.3.0
0 写在前面
~/workspace
中,这样比较方便,以免权限问题带来不必要的麻烦。
1. 环境准备
修改主机名
vi /etc/hostname
,在master上修改为master
,其中一个slave上修改为slave1
,另一个同理。
配置hosts
在每台主机上修改host文件
vi /etc/hosts
10.1.1.107 master
10.1.1.108 slave1
10.1.1.109 slave2
|
配置之后ping一下用户名看是否生效
2.SSH 免密码登录 , 若是scp命令权限否认可以通过拷贝来操作 , 下面红色部分有记载
安装Openssh server
sudo apt-get install openssh-server
|
在所有机器上都生成私钥和公钥
id_rsa.pub
发给master节点,传输公钥可以用scp来传输。
scp ~/.ssh/id_rsa.pub spark@master:~/.ssh/id_rsa.pub.slave1
|
authorized_keys
中
cat ~/.ssh/id_rsa.pub* >> ~/.ssh/authorized_keys
|
authorized_keys
分发给每台slave
scp ~/.ssh/authorized_keys spark@slave1:~/.ssh/
|
在每台机子上验证SSH无密码通信
ssh master
ssh slave1
ssh slave2
|
如果登陆测试不成功,则可能需要修改文件authorized_keys的权限(权限的设置非常重要,因为不安全的设置安全设置,会让你不能使用RSA功能 )
chmod 600 ~/.ssh/authorized_keys
|
3.安装 Java
从官网下载最新版 Java 就可以,Spark官方说明 Java 只要是6以上的版本都可以,我下的是 jdk-7u75-linux-x64.gz
在~/workspace
目录下直接解压
tar -zxvf jdk-7u75-linux-x64.gz
|
sudo vi /etc/profile
,添加下列内容,注意将home路径替换成你的:
export WORK_SPACE=/home/spark/workspace/
export JAVA_HOME=$WORK_SPACE/jdk1.7.0_75
export JRE_HOME=/home/spark/work/jdk1.7.0_75/jre
export PATH=$JAVA_HOME/bin:$JAVA_HOME/jre/bin:$PATH
export CLASSPATH=$CLASSPATH:.:$JAVA_HOME/lib:$JAVA_HOME/jre/lib
|
然后使环境变量生效,并验证 Java 是否安装成功
$ source /etc/profile #生效环境变量
$ java -version #如果打印出如下版本信息,则说明安装成功
java version "1.7.0_75"
Java(TM) SE Runtime Environment (build 1.7.0_75-b13)
Java HotSpot(TM) 64-Bit Server VM (build 24.75-b04, mixed mode)
|
4.安装 Scala
Spark官方要求 Scala 版本为 2.10.x,注意不要下错版本,我这里下了 2.10.4,官方下载地址(可恶的天朝大局域网下载 Scala 龟速一般)。
~/workspace
中解压
tar -zxvf scala-2.10.4.tgz
|
sudo vi /etc/profile
,添加以下内容:
export SCALA_HOME=$WORK_SPACE/scala-2.10.4
export PATH=$PATH:$SCALA_HOME/bin
|
同样的方法使环境变量生效,并验证 scala 是否安装成功
$ source /etc/profile #生效环境变量
$ scala -version #如果打印出如下版本信息,则说明安装成功
Scala code runner version 2.10.4 -- Copyright 2002-2013, LAMP/EPFL
|
5.安装配置 Hadoop YARN
下载解压
从官网下载 hadoop2.6.0 版本,这里给个我们学校的镜像下载地址。
~/workspace
中解压
tar -zxvf hadoop-2.6.0.tar.gz
|
配置 Hadoop
cd ~/workspace/hadoop-2.6.0/etc/hadoop
进入hadoop配置目录,需要配置有以下7个文件:hadoop-env.sh
,yarn-env.sh
,slaves
,core-site.xml
,hdfs-site.xml
,maprd-site.xml
,yarn-site.xml
- 在
hadoop-env.sh
- 中配置JAVA_HOME
# The java implementation to use.
export JAVA_HOME=/home/spark/workspace/jdk1.7.0_75
|
- 在
yarn-env.sh
- 中配置JAVA_HOME
# some Java parameters
export JAVA_HOME=/home/spark/workspace/jdk1.7.0_75
|
- 在
slaves
- 中配置slave节点的ip或者host,
- 修改
core-site.xml
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://master:9000/</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>file:/home/spark/workspace/hadoop-2.6.0/tmp</value>
</property>
</configuration>
|
- 修改
hdfs-site.xml
<configuration>
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>master:9001</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>file:/home/spark/workspace/hadoop-2.6.0/dfs/name</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>file:/home/spark/workspace/hadoop-2.6.0/dfs/data</value>
</property>
<property>
<name>dfs.replication</name>
<value>3</value>
</property>
</configuration>
|
- 修改
mapred-site.xml
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
|
- 修改
yarn-site.xml
<configuration>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
<property>
<name>yarn.resourcemanager.address</name>
<value>master:8032</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>master:8030</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>master:8035</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address</name>
<value>master:8033</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address</name>
<value>master:8088</value>
</property>
</configuration>
|
hadoop-2.6.0
文件夹分发给所有slaves吧
scp -r ~/workspace/hadoop-2.6.0 spark@slave1:~/workspace/
|
启动 Hadoop
在 master 上执行以下操作,就可以启动 hadoop 了。
cd ~/workspace/hadoop-2.6.0 #进入hadoop目录
bin/hadoop namenode -format #格式化namenode
停在这一步咯 , 因为在上面的ssh配置时权限还是不能通过 , 不能与slave1和slave2 ssh通信
这一步已经解决 , 只需将master上的公钥文件id_rsa.pub拷贝到slave1和slave2上并重新命名为
authorized_keys即可 , 这是在虚拟机下出现的问题 , 但是真实环境中还需要试验scp命令来拷贝公钥文件
sbin/start-dfs.sh #启动dfs
这里会出现permission denied问题 , 但是却在slave1和slave2中成功启动了DataNode和NodeManager
sbin/start-yarn.sh #启动yarn
|
验证 Hadoop 是否安装成功
jps
命令查看各个节点启动的进程是否正常。在 master 上应该有以下几个进程:
$ jps #run on master
3407 SecondaryNameNode
3218 NameNode
上面两个没有成功显示出来 , 由于在上面红色部分的问题 , 但是通过http://master:8088成功显示界面
3552 ResourceManager
3910 Jps
|
在每个slave上应该有以下几个进程:
$ jps #run on slaves
2072 NodeManager
2213 Jps
1962 DataNode
|
或者在浏览器中输入 http://master:8088 ,应该有 hadoop 的管理界面出来了,并能看到 slave1 和 slave2 节点。
6.Spark安装
下载解压
进入官方下载地址下载最新版 Spark。我下载的是 spark-1.3.0-bin-hadoop2.4.tgz。
~/workspace
目录下解压
tar -zxvf spark-1.3.0-bin-hadoop2.4.tgz
mv spark-1.3.0-bin-hadoop2.4 spark-1.3.0 #原来的文件名太长了,修改下
|
配置 Spark
cd ~/workspace/spark-1.3.0/conf #进入spark配置目录
cp spark-env.sh.template spark-env.sh #从配置模板复制
vi spark-env.sh #添加配置内容
|
spark-env.sh
末尾添加以下内容(这是我的配置,你可以自行修改):
export SCALA_HOME=/home/spark/workspace/scala-2.10.4
export JAVA_HOME=/home/spark/workspace/jdk1.7.0_75
export HADOOP_HOME=/home/spark/workspace/hadoop-2.6.0
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
SPARK_MASTER_IP=master
SPARK_LOCAL_DIRS=/home/spark/workspace/spark-1.3.0
SPARK_DRIVER_MEMORY=1G
|
注:在设置Worker进程的CPU个数和内存大小,要注意机器的实际硬件条件,如果配置的超过当前Worker节点的硬件条件,Worker进程会启动失败。
vi slaves
在slaves文件下填上slave主机名:
spark-1.3.0
文件夹分发给所有slaves吧
scp -r ~/workspace/spark-1.3.0 spark@slave1:~/workspace/
|
启动Spark
在spark安装目录下执行下面命令才行 , 目前的master安装目录在/opt/spark-2.0.0-bin-hadoop2.7/
验证 Spark 是否安装成功
jps
检查,在 master 上应该有以下几个进程:
$ jps
7949 Jps
7328 SecondaryNameNode
7805 Master
7137 NameNode
7475 ResourceManager
|
在 slave 上应该有以下几个进程:
$jps
3132 DataNode
3759 Worker
3858 Jps
3231 NodeManager
|
进入Spark的Web管理页面: http://master:8080
运行示例
#本地模式两线程运行
./bin/run-example SparkPi 10 --master local[2]
#Spark Standalone 集群模式运行
./bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://master:7077 \
lib/spark-examples-1.3.0-hadoop2.4.0.jar \
100
#Spark on YARN 集群上 yarn-cluster 模式运行
./bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn-cluster \ # can also be `yarn-client`
lib/spark-examples*.jar \
10
|
yarn-cluster
和yarn-client
,具体的区别可以看这篇博文,从广义上讲,yarn-cluster适用于生产环境;而yarn-client适用于交互和调试,也就是希望快速地看到application的输出。