数据库索引
1. 什么是数据库索引?
MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效获取数据的数据结构。
数据库查询是数据库的最主要功能之一,我们都希望查询数据的速度能尽可能的快,因此数据库系统的设计者会从查询算法的角度进行优化。
🐖:也可以这样理解**:**索引的作用就相当于目录的作用。打个比方: 我们在查字典的时候,如果没有目录,那我们就只能一页一页的去找我们需要查的那个字,速度很慢。如果有目录了,我们只需要先去目录里查找字的位置,然后直接翻到那一页就行了。
2. mysql的索引类型有那些
🐅 数据结构角度
. B+Tree树索引(Olog(n))
后文讲
. hash索引
- 仅仅能满足"=",“IN"和”<=>"查询,不能使用范围查询
- 其检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引
- 只有Memory存储引擎显示支持hash索引
. FULLTEXT索引
现在MyISAM和InnoDB引擎都支持了
. R-Tree索引
用于对GIS数据类型创建SPATIAL索引
🐅 物理存储角度
. 聚集索引
- 正文内容按照一个特定维度排序存储,这个特定的维度就是聚集索引;
- Innodb存储引擎中行记录就是按照聚集索引维度顺序存储的,Innodb的表也称为索引表;因为行记录只能按照一个维度进行排序,所以一张表只能有一个聚集索引。
🐖:我们平时建表的时候都会为表加上主键, 在某些关系数据库中, 如果建表时不指定主键,数据库会拒绝建表的语句执行。 事实上, 一个加了主键的表,并不能被称之为「表」。一个没加主键的表,它的数据无序的放置在磁盘存储器上,一行一行的排列的很整齐, 跟我认知中的「表」很接近。如果给表上了主键,那么表在磁盘上的存储结构就由整齐排列的结构转变成了树状结构,也就是上面说的「平衡树」结构,换句话说,就是整个表就变成了一个索引。没错, 再说一遍, 整个表变成了一个索引,也就是所谓的「聚集索引」。 这就是为什么一个表只能有一个主键, 一个表只能有一个「聚集索引」,因为主键的作用就是把「表」的数据格式转换成「索引(平衡树)」的格式放置。
上图就是带有主键的表(聚集索引)的结构图。图画的不是很好, 将就着看。其中树的所有结点(底部除外)的数据都是由主键字段中的数据构成,也就是通常我们指定主键的id字段。最下面部分是真正表中的数据。 假如我们执行一个SQL语句:
select * from table where id = 1256;
首先根据索引定位到1256这个值所在的叶结点,然后再通过叶结点取到id等于1256的数据行。 这里不讲解平衡树的运行细节, 但是从上图能看出,树一共有三层, 从根节点至叶节点只需要经过三次查找就能得到结果。如下图
. 非聚集索引
- 索引是通过二叉树的数据结构来描述的,我们可以这么理解聚簇索引:索引的叶节点就是数据节点。而非聚簇索引的叶节点仍然是索引节点,只不过有一个指针指向对应的数据块。
- 非聚集索引索引项顺序存储,但索引项对应的内容却是随机存储的;
🐖:讲完聚集索引 , 接下来聊一下非聚集索引, 也就是我们平时经常提起和使用的常规索引。
非聚集索引和聚集索引一样, 同样是采用平衡树作为索引的数据结构。索引树结构中各节点的值来自于表中的索引字段, 假如给user表的name字段加上索引 , 那么索引就是由name字段中的值构成,在数据改变时, DBMS需要一直维护索引结构的正确性。如果给表中多个字段加上索引 , 那么就会出现多个独立的索引结构,每个索引(非聚集索引)互相之间不存在关联。 如下图
每次给字段建一个新索引, 字段中的数据就会被复制一份出来, 用于生成索引。 因此, 给表添加索引,会增加表的体积, 占用磁盘存储空间。
非聚集索引和聚集索引的区别在于, 通过聚集索引可以查到需要查找的数据, 而通过非聚集索引可以查到记录对应的主键值 , 再使用主键的值通过聚集索引查找到需要的数据,如下图
不管以任何方式查询表, 最终都会利用主键通过聚集索引来定位到数据, 聚集索引(主键)是通往真实数据所在的唯一路径。
. 覆盖索引 复合索引 多字段索引
🐖:然而, 有一种例外可以不使用聚集索引就能查询出所需要的数据, 这种非主流的方法 称之为「覆盖索引」查询, 也就是平时所说的复合索引或者多字段索引查询。 文章上面的内容已经指出, 当为字段建立索引以后, 字段中的内容会被同步到索引之中, 如果为一个索引指定两个字段, 那么这个两个字段的内容都会被同步至索引之中。
先看下面这个SQL语句
建立索引
create index index_birthday on user_info(birthday);
//查询生日在1991年11月1日出生用户的用户名
select user_name from user_info where birthday = '1991-11-1’
这句SQL语句的执行过程如下
首先,通过非聚集索引index_birthday查找birthday等于1991-11-1的所有记录的主键ID值
然后,通过得到的主键ID值执行聚集索引查找,找到主键ID值对就的真实数据(数据行)存储的位置
最后, 从得到的真实数据中取得user_name字段的值返回, 也就是取得最终的结果
我们把birthday字段上的索引改成双字段的覆盖索引
create index index_birthday_and_user_name on user_info(birthday, user_name);
这句SQL语句的执行过程就会变为
通过非聚集索引index_birthday_and_user_name查找birthday等于1991-11-1的叶节点的内容,然而, 叶节点中除了有user_name表主键ID的值以外, user_name字段的值也在里面, 因此不需要通过主键ID值的查找数据行的真实所在, 直接取得叶节点中user_name的值返回即可。 通过这种覆盖索引直接查找的方式, 可以省略不使用覆盖索引查找的后面两个步骤, 大大的提高了查询性能,如下图
🐅 逻辑角度
. 主键索引
主键索引是一种特殊的唯一索引,不允许有空值,不能重复。
🐖:在mysql的InnoDB的表中,当没有显示的指定表的主键时,InnoDB会自动先检查表中是否有唯一索引的字段,如果有,则选择该字段为默认的主键,否则InnoDB将会自动创建一个6Byte的自增主键。
. 普通索引或单例索引
. 多列索引
复合索引指多个字段上创建的索引,只有在查询条件中使用了创建索引时的第一个字段,索引才会被使用。使用复合索引时遵循最左前缀集合
. 唯一索引或者非唯一索引
. 空间索引
空间索引是对空间数据类型的字段建立的索引,MYSQL中的空间数据类型有4种,分别是GEOMETRY、POINT、LINESTRING、POLYGON。
MYSQL使用SPATIAL关键字进行扩展,使得能够用于创建正规索引类型的语法创建空间索引。创建空间索引的列,必须将其声明为NOT NULL,空间索引只能在存储引擎为MYISAM的表中创建.
3. 索引树是如何维护的
目前大部分数据库系统及文件系统都采用B-Tree或其变种B+Tree作为索引结构,那么索引树是如何维护的?
. 查找结构的进化史
查找是数据结构和算法中一个非常重要的概念。
- 线性查找:一个个找; 实现简单;
- 太慢二分查找:有序;简单;
- 要求是有序的,插入特别慢HASH查找:查询快;占用空间;
- 不太适合存储大规模数据二叉查找树:插入和查询很快(log(n));
- 无法存大规模数据,复杂度退化平衡树:解决 BST 退化问题,树是平衡的;
- 节点非常多的时候,依然树高很高多路查找树:一个父亲多个孩子节点(度);
- 节点过多树高不会特别深多路平衡查找树:B-Tree
4. B-Tree介绍
B-Tree是一种多路搜索树(并不是二叉的):
- 定义任意非叶子结点最多只有M个儿子;
- 且M>2;根结点的儿子数为[2, M];
- 除根结点以外的非叶子结点的儿子数为[M/2, M];
- 每个结点存放至少M/2-1(取上整)和至多M-1个关键字;
- 至少2个关键字)非叶子结点的关键字个数=指向儿子的指针个数-1;
- 非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1];非叶子结点的指针:P[1], P[2], …, P[M];
- 其中P[1]指向关键字小于K[1]的子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;
- 所有叶子结点位于同一层;每个k对应一个data。如:(M=3)相当于一个2–3树,2–3树是一个这样的一棵树,它的每个节点要么有2个孩子和1个数据元素,要么有3个孩子和2个数据元素,叶子节点没有孩子,并且有1个或2个数据元素。
B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点;
- B-Tree的特性
关键字集合分布在整颗树中;
任何一个关键字出现且只出现在一个结点中;
搜索有可能在非叶子结点结束;
其搜索性能等价于在关键字全集内做一次二分查找;
自动层次控制;
- B-Tree的自控制
B树中每一个内部节点会包含一定数量的键值。通常,键值的数量被选定在d和2d之间。在实际中,键值占用了节点中大部分的空间。因数2将保证节点可以被拆分或组合。如果一个内部节点有2d个键值,那么添加一个键值给此节点的过程,将会拆分2d键值为2个d键值的节点,并把此键值添加给父节点。每一个拆分的节点需要最小数目的键值。相似地,如果一个内部节点和他的邻居两者都有d个键值,那么将通过它与邻居的合并来删除一个键值。删除此键值将导致此节点拥有d-1个键值;与邻居的合并则加上d个键值,再加上从邻居节点的父节点移来的一个键值。结果为完全填充的2d个键值。
5. B+Tree介绍
B-Tree有许多变种,其中最常见的是B+Tree,MySQL就普遍使用B+Tree实现其索引结构。与B-Tree相比,B+Tree有以下不同点:
- 非叶子结点的子树指针与关键字个数相同;
- 非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树(B-树是开区间);
- 为所有叶子结点增加一个链指针;
- 所有关键字都在叶子结点出现;内节点不存储data,只存储key如:(M=3);
B+的搜索与B-树也基本相同,区别是B+树只有达到叶子结点才命中(B-树可以在非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;
- B+Tree的特性
- 所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好是有序的;
- 不可能在非叶子结点命中;
- 非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层;
- 更适合文件索引系统;
- 索引的存储
一般来说,索引本身也很大,不可能全部存储在内存中,因此索引往往以索引文件的形式存储的磁盘上。
这样的话,索引查找过程中就要产生磁盘I/O消耗,相对于内存存取,I/O存取的消耗要高几个数量级,所以评价一个数据结构作为索引的优劣最重要的指标就是在查找过程中磁盘I/O操作次数的渐进复杂度。换句话说,索引的结构组织要尽量减少查找过程中磁盘I/O的存取次数。
假如每个盘块可以正好存放一个B树的结点(正好存放2个文件名)。那么一个BTNODE结点就代表一个盘块,而子树指针就是存放另外一个盘块的地址。
- 模拟B+Tree的查找过程
咱们来模拟下查找文件29的过程:
- 根据根结点指针找到文件目录的根磁盘块1,将其中的信息导入内存。【磁盘IO操作 1次】
- 此时内存中有两个文件名17、35和三个存储其他磁盘页面地址的数据。根据算法我们发现:17<29<35,因此我们找到指针p2。
- 根据p2指针,我们定位到磁盘块3,并将其中的信息导入内存。【磁盘IO操作 2次】
- 此时内存中有两个文件名26,30和三个存储其他磁盘页面地址的数据。根据算法我们发现:26<29<30,因此我们找到指针p2。
- 根据p2指针,我们定位到磁盘块8,并将其中的信息导入内存。【磁盘IO操作 3次】
- 此时内存中有两个文件名28,29。根据算法我们查找到文件名29,并定位了该文件内存的磁盘地址。分析上面的过程,发现需要3次磁盘IO操作和3次内存查找操作。关于内存中的文件名查找,由于是一个有序表结构,可以利用折半查找提高效率。至于IO操作是影响整个B树查找效率的决定因素。当然,如果我们使用平衡二叉树的磁盘存储结构来进行查找,磁盘4次,最多5次,而且文件越多,B树比平衡二叉树所用的磁盘IO操作次数将越少,效率也越高。
6. 索引创建的原则
- 在经常用作过滤器的字段上建立索引; 在SQL语句中经常进行GROUP BY、ORDER BY的字段上建立索引;
- 在不同值较少的字段上不必要建立索引,如性别字段; 对于那些查询中很少涉及的列,重复值比较多的列不要建立索引;
- 对于定义为text、image和bit的数据类型的列不要建立索引; 对于经常存取的列避免建立索引;
- 用于联接的列(主健/外健)上建立索引;
- 限制表上的索引数目。对一个存在大量更新操作的表,所建索引的数目一般不要超过3个,最多不要超过5个。索引虽说提高了访问速度,但太多索引会影响数据的更新操作。
- 对复合索引,按照字段在查询条件中出现的频度建立索引。在复合索引中,记录首先按照第一个字段排序。对于在第一个字段上取值相同的记录,系统再按照第二个字段的取值排序,以此类推。因此只有复合索引的第一个字段出现在查询条件中,该索引才可能被使用,因此将应用频度高的字段,放置在复合索引的前面,会使系统最大可能地使用此索引,发挥索引的作用。
7. 面试常问
使用索引一定能提高查询性能吗?
大多数情况下,索引查询都是比全表扫描要快的。但是如果数据库的数据量不大,那么使用索引也不一定能够带来很大提升。
为什么要用索引?索引的优缺点分析
索引的优点
**可以大大加快 数据的检索速度(大大减少的检索的数据量), 这也是创建索引的最主要的原因。毕竟大部分系统的读请求总是大于写请求的。 ** 另外,通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。
索引的缺点
- 创建索引和维护索引需要耗费许多时间:当对表中的数据进行增删改的时候,如果数据有索引,那么索引也需要动态的修改,会降低SQL执行效率。
- 占用物理存储空间 :索引需要使用物理文件存储,也会耗费一定空间。
B-Tree和B+Tree的区别
- B树的所有节点既存放 键(key) 也存放 数据(data);而B+树只有叶子节点存放 key 和 data,其他内节点只存放key。
- B树的叶子节点都是独立的;B+树的叶子节点有一条引用链指向与它相邻的叶子节点。
- B树的检索的过程相当于对范围内的每个节点的关键字做二分查找,可能还没有到达叶子节点,检索就结束了。而B+树的检索效率就很稳定了,任何查找都是从根节点到叶子节点的过程,叶子节点的顺序检索很明显。
Hash索引和 B+树索引优劣分析
Hash索引定位快
Hash索引指的就是Hash表,最大的优点就是能够在很短的时间内,根据Hash函数定位到数据所在的位置,这是B+树所不能比的。
Hash冲突问题
知道HashMap或HashTable的同学,相信都知道它们最大的缺点就是Hash冲突了。不过对于数据库来说这还不算最大的缺点。
Hash索引不支持顺序和范围查询(Hash索引不支持顺序和范围查询是它最大的缺点。
试想一种情况:
SELECT * FROM tb1 WHERE id < 500;
B+树是有序的,在这种范围查询中,优势非常大,直接遍历比500小的叶子节点就够了。而Hash索引是根据hash算法来定位的,难不成还要把 1 - 499的数据,每个都进行一次hash计算来定位吗?这就是Hash最大的缺点了。
非聚集索引一定回表查询吗(覆盖索引)?
非聚集索引不一定回表查询。
试想一种情况,用户准备使用SQL查询用户名,而用户名字段正好建立了索引。
SELECT name FROM table WHERE username='guang19';
那么这个索引的key本身就是name,查到对应的name直接返回就行了,无需回表查询。
即使是MYISAM也是这样,虽然MYISAM的主键索引确实需要回表,
因为它的主键索引的叶子节点存放的是指针。但是如果SQL查的就是主键呢?
SELECT id FROM table WHERE id=1;
主键索引本身的key就是主键,查到返回就行了。这种情况就称之为覆盖索引了。
覆盖索引
如果一个索引包含(或者说覆盖)所有需要查询的字段的值,我们就称之为“覆盖索引”。我们知道在InnoDB存储引擎中,如果不是主键索引,叶子节点存储的是主键+列值。最终还是要“回表”,也就是要通过主键再查找一次。这样就会比较慢覆盖索引就是把要查询出的列和索引是对应的,不做回表操作!
覆盖索引即需要查询的字段正好是索引的字段,那么直接根据该索引,就可以查到数据了,而无需回表查询。
如主键索引,如果一条SQL需要查询主键,那么正好根据主键索引就可以查到主键。
再如普通索引,如果一条SQL需要查询name,name字段正好有索引,
那么直接根据这个索引就可以查到数据,也无需回表。
覆盖索引: