1.距离函数总结

  • 闵可夫斯基距离:给定样本 x → i = ( x i , 1 , x i , 2 , ⋯   , x i , n ) T \overrightarrow{\mathbf{x}}_{i}=\left(x_{i, 1}, x_{i, 2}, \cdots, x_{i, n}\right)^{T} x i​=(xi,1​,xi,2​,⋯,xi,n​)T, x → j = ( x j , 1 , x j , 2 , ⋯   , x j , n ) T \overrightarrow{\mathbf{x}}_{j}=\left(x_{j, 1}, x_{j, 2}, \cdots, x_{j, n}\right)^{T} x j​=(xj,1​,xj,2​,⋯,xj,n​)T,则闵可夫斯基距离定义为:
     distance(  ( x → i , x → j ) = ( ∑ d = 1 n ∣ x i , d − x j , d ∣ p ) 1 / p \text { distance( }\left(\overrightarrow{\mathbf{x}}_{i}, \overrightarrow{\mathbf{x}}_{j}\right)=\left(\sum_{d=1}^{n}\left|x_{i, d}-x_{j, d}\right|^{p}\right)^{1 / p}  distance( (x i​,x j​)=(d=1n​∣xi,d​−xj,d​∣p)1/p
  • 当p=2时,闵可夫斯基距离就是欧式距离
    distance ⁡ ( x → i , x → j ) = ∥ x → i − x → j ∥ 2 = ∑ d = 1 n ∣ x i , d − x j , d ∣ 2 \operatorname{distance}\left(\overrightarrow{\mathbf{x}}_{i}, \overrightarrow{\mathbf{x}}_{j}\right)=\left\|\overrightarrow{\mathbf{x}}_{i}-\overrightarrow{\mathbf{x}}_{j}\right\|_{2}=\sqrt{\sum_{d=1}^{n}\left|x_{i, d}-x_{j, d}\right|^{2}} distance(x i​,x j​)=x i​−x j2​=d=1n​∣xi,d​−xj,d​∣2
  • 当p=1时,闵可夫斯基距离就是曼哈顿距离
     distance  ( x → i , x → j ) = ∥ x → i − x → j ∥ 1 = ∑ d = 1 n ∣ x i , d − x j , d ∣ \text { distance }\left(\overrightarrow{\mathbf{x}}_{i}, \overrightarrow{\mathbf{x}}_{j}\right)=\left\|\overrightarrow{\mathbf{x}}_{i}-\overrightarrow{\mathbf{x}}_{j}\right\|_{1}=\sum_{d=1}^{n}\left|x_{i, d}-x_{j, d}\right|  distance (x i​,x j​)=x i​−x j1​=d=1n​∣xi,d​−xj,d​∣