目录

一、简介

1.哑标

2.自由标

二、torch实现

1.计算迹

2.取矩阵对角线

3.计算外积

4.batch矩阵乘法

5.带有子列表和省略号

6.变换维度

7.双线性变换,类似于torch.nn.functional.bilinear


爱因斯坦求和约定 含代码einsum_深度学习

1.计算迹

        没有显式的输出就是求和在输出。

torch.einsum('ii', torch.randn(4, 4))
# tensor(-1.2104)

2.取矩阵对角线

torch.einsum('ii->i', torch.randn(4, 4))
# tensor([-0.1034,  0.7952, -0.2433,  0.4545])

3.计算外积

x = torch.randn(5)
y = torch.randn(4)
torch.einsum('i,j->ij', x, y)
# tensor([[ 0.1156, -0.2897, -0.3918,  0.4963],
#         [-0.3744,  0.9381,  1.2685, -1.6070],
#         [ 0.7208, -1.8058, -2.4419,  3.0936],
#         [ 0.1713, -0.4291, -0.5802,  0.7350],
#         [ 0.5704, -1.4290, -1.9323,  2.4480]])

4.batch矩阵乘法

        一行代码,将转置和乘法放在一起,确实很方便。

As = torch.randn(3,2,5)
Bs = torch.randn(3,5,4)
torch.einsum('bij,bjk->bik', As, Bs)
# tensor([[[-1.0564, -1.5904,  3.2023,  3.1271],
#          [-1.6706, -0.8097, -0.8025, -2.1183]],
# 
#         [[ 4.2239,  0.3107, -0.5756, -0.2354],
#          [-1.4558, -0.3460,  1.5087, -0.8530]],
# 
#         [[ 2.8153,  1.8787, -4.3839, -1.2112],
#          [ 0.3728, -2.1131,  0.0921,  0.8305]]])

5.带有子列表和省略号

As = torch.randn(3,2,5)
Bs = torch.randn(3,5,4)
torch.einsum(As, [..., 0, 1], Bs, [..., 1, 2], [..., 0, 2])
# tensor([[[-1.0564, -1.5904,  3.2023,  3.1271],
#          [-1.6706, -0.8097, -0.8025, -2.1183]],
# 
#         [[ 4.2239,  0.3107, -0.5756, -0.2354],
#          [-1.4558, -0.3460,  1.5087, -0.8530]],
# 
#         [[ 2.8153,  1.8787, -4.3839, -1.2112],
#          [ 0.3728, -2.1131,  0.0921,  0.8305]]])

6.变换维度

A = torch.randn(2, 3, 4, 5)
torch.einsum('...ij->...ji', A).shape
# torch.Size([2, 3, 5, 4])

7.双线性变换,类似于torch.nn.functional.bilinear

l = torch.randn(2,5)
A = torch.randn(3,5,4)
r = torch.randn(2,4)
torch.einsum('bn,anm,bm->ba', l, A, r)
# tensor([[-0.3430, -5.2405,  0.4494],
#         [ 0.3311,  5.5201, -3.0356]])