一、简介

pt-query-digest是用于分析mysql慢查询的一个工具,它可以分析binlog、General log、slowlog,也可以通过SHOWPROCESSLIST或者通过tcpdump抓取的MySQL协议数据来进行分析。可以把分析结果输出到文件中,分析过程是先对查询语句的条件进行参数化,然后对参数化以后的查询进行分组统计,统计出各查询的执行时间、次数、占比等,可以借助分析结果找出问题进行优化。

二、安装pt-query-digest

1.下载percona-toolkit

下载地址:​​​https://www.percona.com/downloads/percona-toolkit/LATEST/​

percona-toolkit-3.5.0-5安装及详解慢查询日志_mysql

2.安装percona-toolkit
yum install percona-toolkit-3.5.0-5.el7.x86_64.rpm

percona-toolkit-3.5.0-5安装及详解慢查询日志_响应时间_02

3.各工具用法简介

详细内容:​​https://docs.percona.com/percona-toolkit/​

percona-toolkit-3.5.0-5安装及详解慢查询日志_慢查询_03

(1).慢查询日志分析统计
pt-query-digest /usr/local/mysql/data/slow.log
(2).服务器摘要
pt-summary 
(3).服务器磁盘监测
pt-diskstats
(4).mysql服务状态摘要
pt-mysql-summary -- --user=root --password=root 

三、pt-query-digest语法及重要选项

pt-query-digest [OPTIONS] [FILES] [DSN]
--create-review-table 使--review
--create-history-table 使--history
--filter
--limit 20,2050%50%
--host mysql
--user mysql
--password mysql
--history 使--historyCHECKSUM
--review 使--review
--output report()slowlog(Mysql slow log)jsonjson-anon使report便
--since yyyy-mm-dd [hh:mm:ss]s()h()m()d()12h12
--until since

四、分析pt-query-digest输出结果

第一部分:总体统计结果

Overall:总共有多少条查询

Time range:查询执行的时间范围

unique:唯一查询数量,即对查询条件进行参数化以后,总共有多少个不同的查询

total:总计   min:最小   max:最大  avg:平均

95%:把所有值从小到大排列,位置位于95%的那个数,这个数一般最具有参考价值

median:中位数,把所有值从小到大排列,位置位于中间那个数

# 该工具执行日志分析的用户时间,系统时间,物理内存占用大小,虚拟内存占用大小
# 340ms user time, 140ms system time, 23.99M rss, 203.11M vsz
# 工具执行时间
# Current date: Fri Nov 25 02:37:18 2016
# 运行分析工具的主机名
# Hostname: localhost.localdomain
# 被分析的文件名
# Files: slow.log
# 语句总数量,唯一的语句数量,QPS,并发数
# Overall: 2 total, 2 unique, 0.01 QPS, 0.01x concurrency ________________
# 日志记录的时间范围
# Time range: 2016-11-22 06:06:18 to 06:11:40
# 属性 总计 最小 最大 平均 95% 标准 中等
# Attribute total min max avg 95% stddev median
# ============ ======= ======= ======= ======= ======= ======= =======
# 语句执行时间
# Exec time 3s 640ms 2s 1s 2s 999ms 1s
# 锁占用时间
# Lock time 1ms 0 1ms 723us 1ms 1ms 723us
# 发送到客户端的行数
# Rows sent 5 1 4 2.50 4 2.12 2.50
# select语句扫描行数
# Rows examine 186.17k 0 186.17k 93.09k 186.17k 131.64k 93.09k
# 查询的字符数
# Query size 455 15 440 227.50 440 300.52 227.50
第二部分:查询分组统计结果

Rank:所有语句的排名,默认按查询时间降序排列,通过--order-by指定

Query ID:语句的ID,(去掉多余空格和文本字符,计算hash值)

Response:总的响应时间

time:该查询在本次分析中总的时间占比

calls:执行次数,即本次分析总共有多少条这种类型的查询语句

R/Call:平均每次执行的响应时间

V/M:响应时间Variance-to-mean的比率,响应时间的方差均值比,变异数对平均数比,可说明样本的分散程度. 这个值如果很大的话,就需要优化了.

Item:查询对象

# Profile
# Rank Query ID Response time Calls R/Call V/M Item
# ==== ================== ============= ===== ====== ===== ===============
# 1 0xF9A57DD5A41825CA 2.0529 76.2% 1 2.0529 0.00 SELECT
# 2 0x4194D8F83F4F9365 0.6401 23.8% 1 0.6401 0.00 SELECT wx_member_base
第三部分:每一种查询的详细统计结果

由下面查询的详细统计结果,最上面的表格列出了执行次数、最大、最小、平均、95%等各项目的统计。

ID:查询的ID号,和上图的Query ID对应

Databases:数据库名

Users:各个用户执行的次数(占比)

Query_time distribution :查询时间分布, 长短体现区间占比,本例中1s-10s之间查询数量是10s以上的两倍。

Tables:查询中涉及到的表

Explain:SQL语句

# Query 1: 0 QPS, 0x concurrency, ID 0xF9A57DD5A41825CA at byte 802 ______
# This item is included in the report because it matches --limit.
# Scores: V/M = 0.00
# Time range: all events occurred at 2016-11-22 06:11:40
# Attribute pct total min max avg 95% stddev median
# ============ === ======= ======= ======= ======= ======= ======= =======
# Count 50 1
# Exec time 76 2s 2s 2s 2s 2s 0 2s
# Lock time 0 0 0 0 0 0 0 0
# Rows sent 20 1 1 1 1 1 0 1
# Rows examine 0 0 0 0 0 0 0 0
# Query size 3 15 15 15 15 15 0 15
# String:
# Databases test
# Hosts 192.168.8.1
# Users mysql
# Query_time distribution
# 1us
# 10us
# 100us
# 1ms
# 10ms
# 100ms
# 1s ################################################################
# 10s+
# EXPLAIN /*!50100 PARTITIONS*/
select sleep(2)\G

五、用法示例

1.直接分析慢查询文件:
pt-query-digest  slow.log > slow_report.log
2.分析最近12小时内的查询:
pt-query-digest  --since=12h  slow.log > slow_report2.log
3.分析指定时间范围内的查询:
pt-query-digest slow.log --since '2017-01-07 09:30:00' --until '2017-01-07 10:00:00'> > slow_report3.log
4.--filter:过滤器规则
(1).只返回指定类型的查询,如返回select的查询
--filter '$event->{arg} =~ m/^select/i'
--filter '$event->{fingerprint} =~ m/^select/i'

例子:

pt-query-digest --filter '$event->{fingerprint} =~ m/^select/i' slow.log> slow_report4.log
(2).只返回指定用户的查询,如返回zhou用户的查询
--filter '$event->{user} =~ m/^zhou/i'
--filter '($event->{user} || "") =~ m/^zhou/i'

例子:

pt-query-digest --filter '($event->{user} || "") =~ m/^root/i' slow.log> slow_report5.log
(3).只返回指定IP的查询,如返回192.168.163.111的查询
--filter '($event->{host} || $event->{ip} || "") =~ m/^192.168.163.111/i'

例子:

pt-query-digest --filter '($event->{host} || $event->{ip} || "") =~ m/^192.168.163.111/i'  slow.log > slow-20200806.log
(4).只返回指定DB的查询,如返回zhoujinyi DB的查询
--filter '($event->{db} || "") =~ m/^zhoujinyi/i'
(5).返回指定DB和类型的查询,如返回zhoujinyi DB中的select查询
--filter '(($event->{db} || "") =~ m/^mysql/i) && (($event->{fingerprint} || "") =~ m/^select/i)'
(6).查询所有所有的全表扫描或full join的慢查询
pt-query-digest --filter '(($event->{Full_scan} || "") eq "yes") ||(($event->{Full_join} || "") eq "yes")' slow.log> slow_report6.log
5.把查询保存到query_review表
pt-query-digest --user=root password=abc123 --review  h=localhost,D=test,t=query_review--create-review-table > slow.log
6.把查询保存到query_history表
pt-query-digest  --user=root password=abc123 --review  h=localhost,D=test,t=query_history--create-review-table > slow.log_0001
pt-query-digest --user=root password=abc123 --review h=localhost,D=test,t=query_history--create-review-table > slow.log_0002
7.--processlist:轮询此DSN的进程列表以进行分析,并使用--interval:轮询show processlist的频率,以秒为单位(默认为1秒) 间隔1s执行show full processlist 拉取processlist中订阅到的慢查询转存到指定的文件。
pt-query-digest --processlist h=192.168.163.132,u=user,p=123456 --interval=1  --output=slowlog > process.log 
8.通过tcpdump抓取mysql的tcp协议数据,然后再分析
tcpdump -s 65535 -x -nn -q -tttt -i any -c 1000 port 3306 > mysql.tcp.txt
pt-query-digest --type tcpdump mysql.tcp.txt> slow_report9.log
9.分析binlog
mysqlbinlog mysql-bin.000093 > mysql-bin000093.sql
pt-query-digest --type=binlog mysql-bin000093.sql > slow_report10.log
10.分析general log
pt-query-digest  --type=genlog  localhost.log > slow_report11.log