ClickHouse 在数据分析技术领域早已声名远扬,最近由于项目需求使用到了 ClickHouse 做分析数据库,于是用测试环境做了一个单表 6 亿数据量的性能测试。


6亿数据秒级查询,ClickHouse太快了!_性能测试

图片来自 Pexels


本文记录一下测试结果,有做超大数据量分析技术选型需求的朋友可以参考下。



服务器信息


如下:


  • CPU:Intel Xeon Gold 6240 @ 8x 2.594GHz
  • 内存:32G
  • 系统:CentOS 7.6
  • Linux 内核版本:3.10.0
  • 磁盘类型:机械硬盘
  • 文件系统:ext4



Clickhouse 信息


如下:


  • 部署方式:单机部署
  • 版本:20.8.11.17


测试情况


测试数据和测试方法来自 Clickshouse 官方的 Star Schema Benchmark:

https://clickhouse.tech/docs/en/getting-started/example-datasets/star-schema/


按照官方指导造出了测试数据之后,先看一下数据量和空间占用情况。

①数据量和空间占用


如下图:

6亿数据秒级查询,ClickHouse太快了!_sed_02

可以看到 Clickhouse 的压缩率很高,压缩率都在 50 以上,基本可以达到 70 左右。

数据体积的减小可以非常有效的减少磁盘空间占用、提高 I/O 性能,这对整体查询性能的提升非常有效。


supplier、customer、part、lineorder 为一个简单的「供应商-客户-订单-地区」的星型模型。


lineorder_flat 为根据这个星型模型数据关系合并的大宽表,所有分析都直接在这张大宽表中执行,减少不必要的表关联,符合我们实际工作中的分析建表逻辑。


以下性能测试的所有分析 SQL 都在这张大宽表中运行,未进行表关联查询。



查询性能测试详情


①Query 1.1


SELECT sum(LO_EXTENDEDPRICE * LO_DISCOUNT) AS revenue
FROM lineorder_flat
WHERE (toYear(LO_ORDERDATE) = 1993) AND ((LO_DISCOUNT >= 1) AND (LO_DISCOUNT <= 3)) AND (LO_QUANTITY < 25)

┌────────revenue─┐
│ 44652567249651 │
└────────────────┘

1 rows in set. Elapsed: 0.242 sec. Processed 91.01 million rows, 728.06 MB (375.91 million rows/s., 3.01 GB/s.)


扫描行数:91,010,000,大约 9100 万


耗时(秒0.242


查询列数:2


结果行数:1。


②Query 1.2


SELECT sum(LO_EXTENDEDPRICE * LO_DISCOUNT) AS revenue
FROM lineorder_flat
WHERE (toYYYYMM(LO_ORDERDATE) = 199401) AND ((LO_DISCOUNT >= 4) AND (LO_DISCOUNT <= 6)) AND ((LO_QUANTITY >= 26) AND (LO_QUANTITY <= 35))

┌───────revenue─┐
 9624332170119 
└───────────────┘

1 rows in set. Elapsed: 0.040 sec. Processed 7.75 million rows, 61.96 MB (191.44 million rows/s., 1.53 GB/s.)


扫描行数:7,750,000,775 万


耗时(秒):0.040


查询列数:2


返回行数:1


③Query 2.1


SELECT 
    sum(LO_REVENUE),
    toYear(LO_ORDERDATE) AS year,
    P_BRAND
FROM lineorder_flat
WHERE (P_CATEGORY = 'MFGR#12') AND (S_REGION = 'AMERICA')
GROUP BY 
    year,
    P_BRAND
ORDER BY 
    year ASC,
    P_BRAND ASC

┌─sum(LO_REVENUE)─┬─year─┬─P_BRAND───┐
│     64420005618 │ 1992 │ MFGR#121  │
│     63389346096 │ 1992 │ MFGR#1210 │
│     ........... │ .... │ ..........│
│     39679892915 │ 1998 │ MFGR#128  │
│     35300513083 │ 1998 │ MFGR#129  │
└─────────────────┴──────┴───────────┘

280 rows in set. Elapsed: 8.558 sec. Processed 600.04 million rows, 6.20 GB (70.11 million rows/s., 725.04 MB/s.)


扫描行数:600,040,000,大约 6 亿


耗时(秒):8.558


查询列数:3


结果行数:280


④Query 2.2


SELECT 
    sum(LO_REVENUE),
    toYear(LO_ORDERDATE) AS year,
    P_BRAND
FROM lineorder_flat
WHERE ((P_BRAND >= 'MFGR#2221') AND (P_BRAND <= 'MFGR#2228')) AND (S_REGION = 'ASIA')
GROUP BY 
    year,
    P_BRAND
ORDER BY 
    year ASC,
    P_BRAND ASC

┌─sum(LO_REVENUE)─┬─year─┬─P_BRAND───┐
     66450349438  1992  MFGR#2221 
     65423264312  1992  MFGR#2222 
     ...........  ....  ......... 
     39907545239  1998  MFGR#2227 
     40654201840  1998  MFGR#2228 
└─────────────────┴──────┴───────────┘

56 rows in set. Elapsed: 1.242 sec. Processed 600.04 million rows, 5.60 GB (482.97 million rows/s., 4.51 GB/s.)


扫描行数:600,040,000,大约 6 亿


耗时(秒):1.242


查询列数:3


结果行数:56


⑤Query 3.1


SELECT 
    C_NATION,
    S_NATION,
    toYear(LO_ORDERDATE) AS year,
    sum(LO_REVENUE) AS revenue
FROM lineorder_flat
WHERE (C_REGION = 'ASIA') AND (S_REGION = 'ASIA') AND (year >= 1992) AND (year <= 1997)
GROUP BY 
    C_NATION,
    S_NATION,
    year
ORDER BY 
    year ASC,
    revenue DESC

┌─C_NATION──┬─S_NATION──┬─year─┬──────revenue─┐
 INDIA      INDIA      1992  537778456208 
 INDONESIA  INDIA      1992  536684093041 
 .....      .......    ....  ............ 
 CHINA      CHINA      1997  525562838002 
 JAPAN      VIETNAM    1997  525495763677 
└───────────┴───────────┴──────┴──────────────┘

150 rows in set. Elapsed: 3.533 sec. Processed 546.67 million rows, 5.48 GB (154.72 million rows/s., 1.55 GB/s.)


扫描行数:546,670,000,大约 5 亿 4 千多万


耗时(秒):3.533


查询列数:4


结果行数:150


⑥Query 3.2


SELECT 
    C_CITY,
    S_CITY,
    toYear(LO_ORDERDATE) AS year,
    sum(LO_REVENUE) AS revenue
FROM lineorder_flat
WHERE (C_NATION = 'UNITED STATES') AND (S_NATION = 'UNITED STATES') AND (year >= 1992) AND (year <= 1997)
GROUP BY 
    C_CITY,
    S_CITY,
    year
ORDER BY 
    year ASC,
    revenue DESC

┌─C_CITY─────┬─S_CITY─────┬─year─┬────revenue─┐
 UNITED ST6  UNITED ST6  1992  5694246807 
 UNITED ST0  UNITED ST0  1992  5676049026 
 ..........  ..........  ....  .......... 
 UNITED ST9  UNITED ST9  1997  4836163349 
 UNITED ST9  UNITED ST5  1997  4769919410 
└────────────┴────────────┴──────┴────────────┘

600 rows in set. Elapsed: 1.000 sec. Processed 546.67 million rows, 5.56 GB (546.59 million rows/s., 5.56 GB/s.)


扫描行数:546,670,000,大约 5 亿 4 千多万


耗时(秒):1.00


查询列数:4


结果行数:600


⑦Query 4.1


SELECT 
    toYear(LO_ORDERDATE) AS year,
    C_NATION,
    sum(LO_REVENUE - LO_SUPPLYCOST) AS profit
FROM lineorder_flat
WHERE (C_REGION = 'AMERICA') AND (S_REGION = 'AMERICA') AND ((P_MFGR = 'MFGR#1') OR (P_MFGR = 'MFGR#2'))
GROUP BY 
    year,
    C_NATION
ORDER BY 
    year ASC,
    C_NATION ASC

┌─year─┬─C_NATION──────┬────────profit─┐
│ 1992 │ ARGENTINA     │ 1041983042066 │
│ 1992 │ BRAZIL        │ 1031193572794 │
│ .... │ ......        │  ............ │
│ 1998 │ PERU          │  603980044827 │
│ 1998 │ UNITED STATES │  605069471323 │
└──────┴───────────────┴───────────────┘

35 rows in set. Elapsed: 5.066 sec. Processed 600.04 million rows, 8.41 GB (118.43 million rows/s., 1.66 GB/s.)


扫描行数:600,040,000,大约 6 亿


耗时(秒5.066


查询列数:4


结果行数:35


⑧Query 4.2


SELECT 
    toYear(LO_ORDERDATE) AS year,
    S_NATION,
    P_CATEGORY,
    sum(LO_REVENUE - LO_SUPPLYCOST) AS profit
FROM lineorder_flat
WHERE (C_REGION = 'AMERICA') AND (S_REGION = 'AMERICA') AND ((year = 1997) OR (year = 1998)) AND ((P_MFGR = 'MFGR#1') OR (P_MFGR = 'MFGR#2'))
GROUP BY 
    year,
    S_NATION,
    P_CATEGORY
ORDER BY 
    year ASC,
    S_NATION ASC,
    P_CATEGORY ASC

┌─year─┬─S_NATION──────┬─P_CATEGORY─┬───────profit─┐
│ 1997 │ ARGENTINA     │ MFGR#11    │ 102369950215 │
│ 1997 │ ARGENTINA     │ MFGR#12    │ 103052774082 │
│ .... │ .........     │ .......    │ ............ │
│ 1998 │ UNITED STATES │ MFGR#24    │  60779388345 │
│ 1998 │ UNITED STATES │ MFGR#25    │  60042710566 │
└──────┴───────────────┴────────────┴──────────────┘

100 rows in set. Elapsed: 0.826 sec. Processed 144.42 million rows, 2.17 GB (174.78 million rows/s., 2.63 GB/s.)


扫描行数:144,420,000,大约 1 亿 4 千多万


耗时(秒0.826


查询列数:4


结果行数:100



性能测试结果汇总


如下图:

6亿数据秒级查询,ClickHouse太快了!_数据_03

在当前软硬件环境下,扫描 6 亿多行数据,常见的分析语句首次运行最慢在 8 秒左右能返回结果。


相同的分析逻辑更换条件再次查询的时候效率有明显的提升,可以缩短到 1 秒左右。


如果只是简单的列查询没有加减乘除、聚合等逻辑,扫描全表 6 亿多行数据首次查询基本可以在 2 秒内执行完成。

    6亿数据秒级查询,ClickHouse太快了!_sed_04