前言

本文整理并总结了十大经典的排序算法(冒泡排序、选择排序、插入排序、快速排序、归并排序、希尔排序、计数排序、基数排序、桶排序、堆排序)的时间复杂度、空间复杂度等性质。

本文并不会详细讲解每种排序算法的原理,网上有很多很好的教程,大家可以自己去搜了看。

最后我还亲自手写了十种排序算法的 c++ 代码,大家可以用来通过 LeetCode 912. 排序数组[1] 这道题。

性质汇总

如果发现图中有错误,请留言告知。

十大经典排序算法整理汇总(附代码)_排序算法十大经典排序算法性质汇总

维基百科

我觉得还是英文维基百科讲的比较详细、严谨。如果大家看的比较累的话,可以自己百度搜索相应的教程。

冒泡排序
https://en.wikipedia.org/wiki/Bubble_sort

选择排序
https://en.wikipedia.org/wiki/Selection_sort

插入排序
https://en.wikipedia.org/wiki/Insertion_sort

快速排序
https://en.wikipedia.org/wiki/Quicksort

归并排序
https://en.wikipedia.org/wiki/Merge_sort

希尔排序
https://en.wikipedia.org/wiki/Shellsort

计数排序
https://en.wikipedia.org/wiki/Counting_sort

基数排序
https://en.wikipedia.org/wiki/Radix_sort

桶排序
https://en.wikipedia.org/wiki/Bucket_sort

堆排序
https://en.wikipedia.org/wiki/Heapsort

代码实现

所有的排序算法接口都是相同的,也就是 vector<int> xxxSort(vector<int>& nums) 。只需要你传入一个 vector<int> 类型的数组,就能返回排序后的结果。

运行下来可以发现,桶排序速度是比较快的。而冒泡排序、选择排序和插入排序因为时间复杂度太高无法通过本题,基数排序因为无法处理负数也不能通过本题。

  •  
class Solution {public:    vector<int> sortArray(vector<int>& nums) {        return quickSort(nums);    }


    // 冒泡排序(超时)    vector<int> bubbleSort(vector<int>& nums) {        int n = nums.size();        for (int i = 0; i < n; ++i) {            for (int j = n-2; j >= i; --j) {                if (nums[j] > nums[j+1]) {                    swap(nums[j], nums[j+1]);                }            }        }        return nums;    }


    // 选择排序(超时)    vector<int> selectSort(vector<int>& nums) {        int n = nums.size();        for (int i = 0; i < n; ++i) {            int idx = i;            for (int j = i; j < n; ++j) {                if (nums[j] < nums[idx]) {                    idx = j;                }            }            swap(nums[i], nums[idx]);        }        return nums;    }


    // 插入排序(超时)    vector<int> insertSort(vector<int>& nums) {        int n = nums.size();        for (int i = 0; i < n; ++i) {            for (int j = i; j > 0 && nums[j] < nums[j-1]; --j) {                swap(nums[j], nums[j-1]);            }        }        return nums;    }


    // 快速排序(24 ms)    void qSort(vector<int>& nums, int l, int r) {        if (l >= r) return;        int m = l;        for (int i = l; i < r; ++i) {            if (nums[i] < nums[r]) {                swap(nums[m++], nums[i]);            }        }        swap(nums[m], nums[r]);        qSort(nums, l, m-1);        qSort(nums, m+1, r);    }


    vector<int> quickSort(vector<int>& nums) {        int n = nums.size();        qSort(nums, 0, n-1);        return nums;    }


    // 归并排序(192 ms)    vector<int> mSort(vector<int>& nums, int l, int r) {        if (l >= r) return {nums[l]};        int m = l+(r-l)/2;        vector<int> lnums = mSort(nums, l, m);        vector<int> rnums = mSort(nums, m+1, r);        vector<int> res;        int i = 0, j = 0;        while (i <= m-l && j <= r-m-1) {            if (lnums[i] < rnums[j]) {                res.push_back(lnums[i++]);            } else {                res.push_back(rnums[j++]);            }        }        while (i <= m-l) {            res.push_back(lnums[i++]);        }        while (j <= r-m-1) {            res.push_back(rnums[j++]);        }        return res;    }


    vector<int> mergeSort(vector<int>& nums) {        int n = nums.size();        nums = mSort(nums, 0, n-1);        return nums;    }


    // 归并排序 + 非递归(80 ms)    vector<int> mergeSortNR(vector<int>& nums) {        int n = nums.size();        for (int len = 1; len < n; len <<= 1) {            for (int l = 0; l < n-len; l += 2*len) {                int m = l+len-1;                int r = min(n-1, l+2*len-1);                vector<int> res;                int i = l, j = m+1;                while (i <= m && j <= r) {                    if (nums[i] < nums[j]) {                        res.push_back(nums[i++]);                    } else {                        res.push_back(nums[j++]);                    }                }                while (i <= m) {                    res.push_back(nums[i++]);                }                while (j <= r) {                    res.push_back(nums[j++]);                }                for (int i = l; i <= r; ++i) {                    nums[i] = res[i-l];                }            }        }        return nums;    }


    // 希尔排序(40 ms)    vector<int> shellSort(vector<int>& nums) {        int n = nums.size();        for (int gap = n/2; gap > 0; gap /= 2) {            for (int i = gap; i < n; ++i) {                for (int j = i; j-gap >= 0 && nums[j-gap] > nums[j]; j -= gap) {                    swap(nums[j-gap], nums[j]);                }            }        }        return nums;    }


    // 计数排序(32 ms)    vector<int> countSort(vector<int>& nums) {        int n = nums.size();        if (!n) return {};        int minv = *min_element(nums.begin(), nums.end());        int maxv = *max_element(nums.begin(), nums.end());        int m = maxv-minv+1;        vector<int> count(m, 0);        for (int i = 0; i < n; ++i) {            count[nums[i]-minv]++;        }        vector<int> res;        for (int i = 0; i < m; ++i) {            for (int j = 0; j < count[i]; ++j) {                res.push_back(i+minv);            }        }        return res;    }


    // 基数排序(不适用于负数)    vector<int> radixSort(vector<int>& nums) {        int n = nums.size();        int maxv = *max_element(nums.begin(), nums.end());        int maxd = 0;        while (maxv > 0) {            maxv /= 10;            maxd++;        }        vector<int> count(10, 0), rank(n, 0);        int base = 1;        while (maxd > 0) {            count.assign(10, 0);            for (int i = 0; i < n; ++i) {                count[(nums[i]/base)%10]++;            }            for (int i = 1; i < 10; ++i) {                count[i] += count[i-1];            }            for (int i = n-1; i >= 0; --i) {                rank[--count[(nums[i]/base)%10]] = nums[i];            }            for (int i = 0; i < n; ++i) {                nums[i] = rank[i];            }            maxd--;            base *= 10;        }        return nums;    }


    // 桶排序 (20 ms)    vector<int> bucketSort(vector<int>& nums) {        int n = nums.size();        int maxv = *max_element(nums.begin(), nums.end());        int minv = *min_element(nums.begin(), nums.end());        int bs = 1000;        int m = (maxv-minv)/bs+1;        vector<vector<int> > bucket(m);        for (int i = 0; i < n; ++i) {            bucket[(nums[i]-minv)/bs].push_back(nums[i]);        }        int idx = 0;        for (int i = 0; i < m; ++i) {            int sz = bucket[i].size();            bucket[i] = quickSort(bucket[i]);            for (int j = 0; j < sz; ++j) {                nums[idx++] = bucket[i][j];            }        }        return nums;    }


    // 堆排序(32 ms)    void adjust(vector<int>& nums, int p, int s) {        while (2*p+1 < s) {            int c1 = 2*p+1;            int c2 = 2*p+2;            int c = (c2<s && nums[c2]>nums[c1]) ? c2 : c1;            if (nums[c] > nums[p]) swap(nums[c], nums[p]);            else break;            p = c;        }    }


    vector<int> heapSort(vector<int>& nums) {        int n = nums.size();        for (int i = n/2-1; i >= 0; --i) {            adjust(nums, i, n);        }        for (int i = n-1; i > 0; --i) {            swap(nums[0], nums[i]);            adjust(nums, 0, i);        }        return nums;    }};


 

 

十大经典排序算法整理汇总(附代码)_基数排序_02