欢迎访问我的GitHub

这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos

本篇概览

  • 在《Elasticsearch聚合学习》系列的前面两篇文章中,我们熟悉了基本聚合操作,但这些操作都是面向索引中的全部数据(例如所有汽车销售记录一共有几种颜色的汽车),今天要学习的是如何对一定范围内的数据做聚合(例如以前是看所有汽车一共有几种颜色,现在只看福特汽车一共有几种颜色);

环境信息

  • 以下是本次实战的环境信息,请确保您的Elasticsearch可以正常运行:
  1. 操作系统:Ubuntu 18.04.2 LTS
  2. JDK:1.8.0_191
  3. Elasticsearch:6.7.1
  4. Kibana:6.7.1
  • 实战用的数据依然是一些汽车销售的记录,在第一章有详细的导入步骤,请参考操作,导入后您的es中的数据如下图: 在这里插入图片描述

本章概要

  • 本篇聚焦查询范围限定,由以下内容构成:
  1. 不做限定时的默认范围;
  2. 最简单的查询范围
  3. 全局桶
  4. 使用过滤器
  5. 桶内使用过滤器

不做限定时的默认范围

  • 下面是个普通的聚合请求,将文档按照color字段聚合,由于没有做任何范围限定,因此查询的是所有文档:
GET /cars/transactions/_search
{
  "size":0,
  "aggs":{
   "popular_colors":{
     "terms": {
       "field": "color"
     }
   } 
  }
}
  • 下面请求带上了查询条件match_all ,匹配所有文档,和前面不带查询条件的请求达到了同样效果:
GET /cars/transactions/_search
{
  "size":0,
  "query": {            ------查询条件
    "match_all": {}     ------匹配所有文档
  }, 
  "aggs":{
   "popular_colors":{
     "terms": {
       "field": "color"
     }
   } 
  }
}

最简单的查询范围

  • 前面提出了一个问题:**福特汽车一共分为几种颜色?**这就是最简单的范围限定聚合(限定了汽车品牌),查询DSL如下:
GET /cars/transactions/_search
{
  "size":0,
  "query": {                ---范围限定的查询
    "term": {               ---查询类型是精确匹配
      "make": "ford"        ---查询条件是品牌为福特
    }
  }, 
  "aggs":{                  ---聚合
   "popular_colors":{       ---聚合字段名
     "terms": {             ---桶类型
       "field": "color"     ---匹配字段是color
     }
   } 
  }
}
  • 返回结果如下,只有福特汽车的聚合数据:
{
  "took" : 7,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 2,
    "max_score" : 0.0,
    "hits" : [ ]
  },
  "aggregations" : {                       ---聚合结果
    "popular_colors" : {                   ---聚合字段
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 0,
      "buckets" : [                        ---这个数组的元素是所有的桶
        {
          "key" : "blue",                  ---color为blue的文档
          "doc_count" : 1                  ---文档数为1
        },
        {
          "key" : "green",                 ---color为blue的文档
          "doc_count" : 1                  ---文档数为1
        }
      ]
    }
  }
}

全局桶

  • 如果想对比福特汽车的销售额和所有汽车的销售额,可以通过全局桶对所有文档做聚合,关键字是global,全局桶的聚合不受范围限定的影响:
GET /cars/transactions/_search
{
  "size": 0,
  "query": {			     ---范围限定的查询
    "term": {                ---查询类型是精确匹配
      "make": "ford"         ---查询条件是品牌为福特
    }
  },
  "aggs": {                  ---聚合
    "ford_sales": {          ---聚合字段名
      "sum": {               ---直接对范围内的所有文档执行metrics,类型是累加
        "field": "price"     ---选择price字段的值进行累加
      }
    },
    "all": {                 ---聚合字段名
      "global": {},          ---全局桶关键字,表示忽略前面term查询的范围限定
      "aggs": {              ---聚合
        "all_sales": {       ---聚合字段名
          "sum": {           ---直接对范围内的所有文档执行metrics,类型是累加
            "field": "price" ---选择price字段的值进行累加
          }
        }
      }
    }
  }
}
  • 来看看结果:
......
  "aggregations" : {         ---聚合结果
    "all" : {                ---全局桶的聚合结果(term查询无效)
      "doc_count" : 8,       ---文档总数
      "all_sales" : {        ---聚合字段名
        "value" : 212000.0   ---总销售额
      }
    },
    "ford_sales" : {         ---聚合字段名(term查询限定了范围,只有福特汽车的销售记录)
      "value" : 55000.0      ---福特汽车销售额
    }
  }
}

不止是query

  • 前面的范围限定用到了query,其实适用于查询的过滤器也能应用在聚合操作中,下面是过滤+聚合的查询,和前面一样,也是统计总销售和和福特汽车的销售额:
GET /cars/transactions/_search
{
  "size": 0,
  "query": {
    "bool": {                 ---布尔查询,里面可以将query和filter组合使用
      "filter": {             ---本例只用到了filter
        "term": {             ---精确匹配
          "make": "ford"      ---匹配福特品牌 
        }
      }
    }
  },
  "aggs": {                   ---聚合结果
    "ford_sales": {           ---聚合字段名
      "sum": {                ---metrics操作,累加
        "field": "price"      ---累加字段是price
      }
    },
    "all": {                  ---聚合字段名                  
      "global": {},           ---全局桶关键字,表示忽略范围限定
      "aggs": {               ---聚合
        "all_sales": {        ---聚合字段名
          "sum": {            ---metrics操作,累加
            "field": "price"  ---累加字段是price
          }
        }
      }
    }
  }
}
  • 查询结果如下,和query的一样:
......
  "aggregations" : {
    "all" : {
      "doc_count" : 8,
      "all_sales" : {
        "value" : 212000.0
      }
    },
    "ford_sales" : {
      "value" : 55000.0
    }
  }
}
  • **注意:**虽然query和filter限定范围的结果是一样的,但是filter会忽略评分,并且有可能缓存结果数据,这些都是性能上的优势;

桶内filter

  • 学习桶内filter之前,先看看官方的布尔查询DSL,如下所示,查询JSON对象的内部可以加入filter,对查询结果做过滤:
GET /_search
{
  "query": { 
    "bool": { 
      "must": [                                     ---布尔查询
        { "match": { "title":   "Search"        }}, 
        { "match": { "content": "Elasticsearch" }}  
      ],
      "filter": [                                   ---对查询结果做过滤
        { "term":  { "status": "published" }}, 
        { "range": { "publish_date": { "gte": "2015-01-01" }}} 
      ]
    }
  }
}
  • 桶内filter和布尔查询中的filter类似,对进入桶中的数据可以加入filter,这样桶内的数据就是此filter过滤后的数据了;
  • 举个例子,统计蓝色的福特汽车销售额,首先限定品牌范围,这个可以直接用之前的限定方式,然后在桶内加入一个filter,只保留颜色为蓝色的文档:
GET /cars/transactions/_search
{
  "size": 0,
  "query": {
    "bool": {                 ---布尔查询,里面可以将query和filter组合使用
      "filter": {             ---本例只用到了filter
        "term": {             ---精确匹配
          "make": "ford"      ---匹配福特品牌 
        }
      }
    }
  },
  "aggs": {
    "sales": {
      "filter": {             ---桶内filter
        "term": {             ---精确匹配
          "color": "blue"     ---匹配蓝色
        }
      },
      "aggs": {
        "blue_sales": {
          "sum": {            ---metrics操作,累加
            "field": "price"
          }
        }
      }
    }
  }
}
  • 返回结果如下,可见hits.total等于2,表示查询到了两个文档,但是sales.doc_count等于1,表示桶内filter作用后再桶内只剩下一个文档了:
  "hits" : {
    "total" : 2,
    "max_score" : 0.0,
    "hits" : [ ]
  },
  "aggregations" : {
    "sales" : {
      "doc_count" : 1,
      "green_sales" : {
        "value" : 25000.0
      }
    }
  }
}

后过滤器(post_filter)

  • 还有一种特殊的filter,名为post_filter,其作用描述如下:

  • 正常的聚合:先查询,得到查询结果A,再用A做聚合操作得到结果B,最后返回B和A;

  • 带有post_filter的聚合:先查询,得到查询结果A,再用A做聚合操作得到结果B,然后用A做过滤得到C(过滤条件就是post_filter),最后返回B和C;

  • 可见无论是否使用post_filter,返回的聚合结果都是根据A生成的B,不同之处在于用了post_filter就不返回A,而是返回A的过滤结果;

  • 以下是来自《Elasticsearch 权威指南》的post_filter示例:

GET /cars/transactions/_search
{
    "size" : 0,
    "query": {
        "match": {
            "make": "ford"
        }
    },
    "post_filter": {    
        "term" : {
            "color" : "green"
        }
    },
    "aggs" : {
        "all_colors": {
            "terms" : { "field" : "color" }
        }
    }
}
  • **值得注意得是:**如果只做查询不做聚合,post_filter的作用和我们常用的filter是类似的,但由于post_filter是在查询之后才会执行,所以post_filter不具备filter对查询带来的好处(忽略评分、缓存等),因此,在普通的查询中不要用post_filter来替代filter;

  • 如果您向进一步了解post_filter,请参考《理解elasticsearch的post_filter》

  • 至此,带有范围限定的聚合操作实战就全部完成了,目前所有示例的结果都是默认排序的,接下来的章节将一起学习了解如何对聚合结果做排序。

欢迎关注51CTO博客:程序员欣宸

学习路上,你不孤单,欣宸原创一路相伴...