上篇介绍了三种CPU 上下文切换以及它们可能造成的问题和原因,这一篇来看看在系统中如何发现CPU 上下文切换问题。

 

一、 查看上下文切换情况

主要使用两个命令:vmstat以及之前用过的pidstat。

1. vmstat

# 每隔5秒输出1组数据
vmstat 5

procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
 r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa st
 0  0      0 7005360  91564 818900    0    0     0     0   25   33  0  0 100  0  0

对上下文切换而言需要特别关注的四列内容:

  • cs(context switch)是每秒上下文切换的次数。
  • in(interrupt)则是每秒中断的次数。
  • r(Running or Runnable)是就绪队列的长度,也就是正在运行和等待 CPU 的进程数。
  • b(Blocked)则是处于不可中断睡眠状态的进程数。

 

2. pidstat

vmstat 只给出了系统总体的上下文切换情况,要想查看每个进程的详细情况,就需要使用前面提到过的 pidstat 了。给它加上 -w 选项,就可以查看每个进程上下文切换的情况。

# 每隔5秒输出1组数据
pidstat -w 5

Linux 4.15.0 (ubuntu)  09/23/18  _x86_64_  (2 CPU)
08:18:26      UID       PID   cswch/s nvcswch/s  Command
08:18:31        0         1      0.20      0.00  systemd
08:18:31        0         8      5.40      0.00  rcu_sched
...

有两列内容是我们的重点关注对象。

cswch ,表示每秒自愿上下文切换(voluntary context switches)的次数。是指进程无法获取所需资源,导致的上下文切换。比如说,I/O、内存等系统资源不足时,就会发生自愿上下文切换。

nvcswch ,表示每秒非自愿上下文切换(non voluntary context switches)的次数。是指进程由于时间片已到等原因,被系统强制调度,进而发生的上下文切换。比如说,大量进程都在争抢 CPU 时,就容易发生非自愿上下文切换。
 

二、 案例测试

文中安装了sysbench进行多线程压测(stress只能进行多进程级别),这也是数据库压测常用的工具之一。

第一个终端里运行 sysbench ,模拟系统多线程调度的瓶颈:

# 以10个线程运行5分钟的基准测试,模拟多线程切换的问题
sysbench --threads=10 --max-time=300 threads run

在第二个终端运行 vmstat ,观察上下文切换情况:
 

# 每隔1秒输出1组数据(需要Ctrl+C才结束)
vmstat 1

procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu----
r b swpd free buff cache si so bi bo in cs us sy id wa s
6 0 0 6487428 118240 1292772 0 0 0 0 9019 1398830 16 84 0
8 0 0 6487428 118240 1292772 0 0 0 0 10191 1392312 16 84
  • cs 列:上下文切换次数骤然上升到了 139 万
  • r 列:就绪队列的长度已经到了 8,远远超过了系统 CPU 的个数 2,所以肯定会有大量的 CPU 竞争
  • us(user)和 sy(system)列:这两列的 CPU 使用率加起来上升到了 100%,其中sy 列高达 84%
  • in 列:中断次数也上升到了 1 万左右,说明中断处理也是个潜在的问题。
     

综合这几个指标,我们可以知道,系统的就绪队列过长,也就是正在运行和等待 CPU 的进程数过多,导致了大量的上下文切换,而上下文切换又导致了系统 CPU 的占用率升高。

在第三个终端再用 pidstat 来看一下, CPU 和进程上下文切换的情况:

# 每隔1秒输出1组数据(需要 Ctrl+C 才结束)
# -w参数表示输出进程切换指标,而-u参数则表示输出CPU使用指标
pidstat -w -u 1

08:06:33      UID       PID    %usr %system  %guest   %wait    %CPU   CPU  Command
08:06:34        0     10488   30.00  100.00    0.00    0.00  100.00     0  sysbench
08:06:34        0     26326    0.00    1.00    0.00    0.00    1.00     0  kworker/u4:2

08:06:33      UID       PID   cswch/s nvcswch/s  Command
08:06:34        0         8     11.00      0.00  rcu_sched
08:06:34        0        16      1.00      0.00  ksoftirqd/1
08:06:34        0       471      1.00      0.00  hv_balloon
08:06:34        0      1230      1.00      0.00  iscsid
08:06:34        0      4089      1.00      0.00  kworker/1:5
08:06:34        0      4333      1.00      0.00  kworker/0:3
08:06:34        0     10499      1.00    224.00  pidstat
08:06:34        0     26326    236.00      0.00  kworker/u4:2
08:06:34     1000     26784    223.00      0.00  sshd

从 pidstat 的输出你可以发现,CPU 使用率的升高果然是 sysbench 导致的,它的 CPU 使用率已经达到了 100%。但上下文切换则是来自其他进程,包括非自愿上下文切换频率最高的 pidstat ,以及自愿上下文切换频率最高的内核线程 kworker 和 sshd。

另外可以看到,pidstat 输出的上下文切换次数,加起来也就几百,比 vmstat 的 139 万明显小了太多。这是怎么回事呢?

Linux 调度的基本单位实际上是线程,而我们的场景 sysbench 模拟的也是线程的调度问题,那么,是不是 pidstat 忽略了线程的数据呢?通过运行 man pidstat ,你会发现,pidstat 默认显示进程的指标数据,加上 -t 参数后,才会输出线程的指标。

我们在第三个终端里再加上 -t 参数,重试一下看看:

# 每隔1秒输出一组数据(需要 Ctrl+C 才结束)
# -wt 参数表示输出线程的上下文切换指标
pidstat -wt 1

08:14:05      UID      TGID       TID   cswch/s nvcswch/s  Command
...
08:14:05        0     10551         -      6.00      0.00  sysbench
08:14:05        0         -     10551      6.00      0.00  |__sysbench
08:14:05        0         -     10552  18911.00 103740.00  |__sysbench
08:14:05        0         -     10553  18915.00 100955.00  |__sysbench
08:14:05        0         -     10554  18827.00 103954.00  |__sysbench
...

现在你就能看到了,虽然 sysbench 进程(也就是主线程)的上下文切换次数看起来并不多,但它的子线程的上下文切换次数却有很多。看来,上下文切换罪魁祸首,还是过多的sysbench 线程。

 

我们已经找到了上下文切换次数增多的根源,那是不是到这儿就可以结束了呢?

当然不是。前面在观察系统指标时,除了上下文切换频率骤然升高,中断次数也上升到了 1 万,但到底是什么类型的中断上升了,现在还不清楚。我们接下来继续抽丝剥茧找源头。

 

三、 中断分析

中断只发生在内核态,而 pidstat 只是一个进程的性能分析工具,并不提供任何关于中断的详细信息,怎样才能知道中断发生的类型呢?那就是从 /proc/interrupts 这个只读文件中读取。

/proc 实际上是 Linux 的一个虚拟文件系统,用于内核空间与用户空间之间的通信。/proc/interrupts 就是这种通信机制的
一部分,提供了一个只读的中断使用情况。

我们运行下面的命令,观察中断的变化情况:

# -d 参数表示高亮显示变化的区域
watch -d cat /proc/interrupts

           CPU0       CPU1
...
RES:    2450431    5279697   Rescheduling interrupts
...

观察一段时间可以发现,变化速度最快的是重调度中断(RES),它表示唤醒空闲状态的 CPU 来调度新的任务运行。这是多处理器系统中,调度器用来分散任务到不同 CPU 的机制,通常也被称为处理器间中断(Inter-Processor Interrupts,IPI)。所以,这里的中断升高还是因为过多任务的调度问题,跟前面上下文切换次数的分析结果是一致的。

 

四、 每秒上下文切换多少次才算正常

这个数值其实取决于系统本身的 CPU 性能。如果系统的上下文切换次数比较稳定,那么从数百到一万以内,都应该算是正常的。但当上下文切换次数超过一万次,或者切换次数出现数量级的增长时,就很可能已经出现了性能问题。

这时,你还需要根据上下文切换的类型,再做具体分析。比方说:

  • 自愿上下文切换变多了,说明进程都在等待资源,有可能发生了 I/O 等其他问题;
  • 非自愿上下文切换变多了,说明进程都在被强制调度,也就是都在争抢 CPU,说明 CPU的确成了瓶颈;
  • 中断次数变多了,说明 CPU 被中断处理程序占用,还需要通过查看 /proc/interrupts文件来分析具体的中断类型。