已知一个几乎有序的数组,几乎有序是指,如果把数组排好顺序的话,每个元素移动的距离可以不超过k,并且k相对于数组来说比较小。请选择一个合适的排序算法针对这个数据进行排序。 给定一个int数组A,同时给定A的大小n和题意中的k,请返回排序后的数组。

测试样例:

[2,1,4,3,6,5,8,7,10,9],10,2 返回:[1,2,3,4,5,6,7,8,9,10] 我的提交 (照着参考答案改的,结果显示时间复杂度过高,囧~)

-- coding:utf-8 --

class ScaleSort: def sortElement(self, A, n, k): heap = self.buildHeap(A, k) for i in range(k, n): A[i - k] = heap[0] heap[0] = A[i] self.adjustHeap(heap, 0, k)

    for j in range(n - k, n):
        k = k - 1
        A[j] = heap[0]
        heap[0] = heap[k]
        self.adjustHeap(heap, 0, k)
    return A


def buildHeap(self, A, k):
    heap = [0 for _ in range(k)]
    for i in range(k):
        self.insertHeap(heap, A[i], i)
    return heap

def insertHeap(self, heap, value, index):
    heap[index] = value
    while index != 0:
        parentIndex = (index - 1) // 2
        if heap[parentIndex] > heap[index]:
            heap[parentIndex], heap[index] =  heap[index], heap[parentIndex]
            index = parentIndex
        else:
            break

def adjustHeap(self, heap, index, k):
    minIndex = index
    parentIndex = index
    minParentIndex = (k - 1)  // 2
    while minIndex <= minParentIndex:
        lchildIndex = minIndex * 2
        rchildIndex = lchildIndex + 1
        if lchildIndex < k and heap[lchildIndex] < heap[minIndex]:
            minIndex = lchildIndex
        if rchildIndex< k and heap[rchildIndex] < heap[minIndex]:
            minIndex = rchildIndex
        if minIndex == parentIndex:
            break
        else:
            heap[minIndex], heap[parentIndex] = heap[parentIndex], heap[minIndex]
        parentIndex = minIndex

if name == 'main': heap = ScaleSort() print(heap.sortElement([2,1,4,3,6,5,8,7,10,9],10,2)) 参考答案 import java.util.*;

public class ScaleSort {

    public  int[] sortElement(int[] A, int n, int k) {
    if (A == null || A.length == 0 || n < k) {
        return A;
    }
    int[] heap = getKHeap(A, k);
    for (int i = k; i < n; i++) {
        A[i - k] = heap[0];
        heap[0] = A[i];
        heapify(heap, 0, k);
    }
    for (int i = n - k; i < n; i++) {
        A[i] = heap[0];
        swap(heap, 0, k - 1);
        heapify(heap, 0, --k);
    }
    return A;
}

public  int[] getKHeap(int[] A, int k) {
    int[] heap = new int[k];
    for (int i = 0; i < k; i++) {
        heapInsert(heap, A[i], i);
    }
    return heap;
}

public  void heapInsert(int[] heap, int value, int index) {
    heap[index] = value;
    while (index != 0) {
        int parent = (index - 1) / 2;
        if (heap[parent] > heap[index]) {
            swap(heap, parent, index);
            index = parent;
        } else {
            break;
        }
    }
}

public  void heapify(int[] arr, int index, int heapSize) {
    int left = index * 2 + 1;
    int right = index * 2 + 2;
    int smallest = index;
    while (left < heapSize) {
        if (arr[left] < arr[index]) {
            smallest = left;
        }
        if (right < heapSize && arr[right] < arr[smallest]) {
            smallest = right;
        }
        if (smallest != index) {
            swap(arr, smallest, index);
        } else {
            break;
        }
        index = smallest;
        left = index * 2 + 1;
        right = index * 2 + 2;
    }
}

public  void swap(int[] arr, int index1, int index2) {
    int tmp = arr[index1];
    arr[index1] = arr[index2];
    arr[index2] = tmp;
}

}